
- •Как найти производную? Примеры решений
- •Производная сложной функции. Примеры решений
- •Сложные производные
- •Логарифмическая производная
- •Производная степенно-показательной функции
- •Производная функции, заданной неявно
- •Производная параметрически заданной функции
- •Простейшие типовые задачи с производной. Примеры решений
- •Производная функции в точке
- •Уравнение касательной к графику функции
- •Как составить уравнение касательной в точке с абсциссой ?
- •Дифференциал функции одной переменной
- •Вторая производная
- •Производные высших порядков
- •производным высших порядков от произведения функций
- •Формула Лейбница
- •Производные высших порядков от функций, заданных неявно
- •Что такое производная? Определение и смысл производной функции
- •Понятие возрастания, убывания, максимума, минимума функции
- •Скорость изменения функции
- •Производная функции в точке
- •Геометрический смысл производной
- •Существование производной в точке и непрерывность функции
- •Дифференциал функции в точке и его геометрический смысл
- •Понятие производной функции
- •Производная по определению (через предел). Примеры решений
- •Как найти производную по определению?
- •Как найти уравнение нормали к графику функции в заданной точке?
- •Как найти уравнение касательной и уравнение нормали, если функция задана неявно?
- •Как найти уравнение касательной и уравнение нормали, если функция задана параметрически?
- •Приближенные вычисления с помощью дифференциала
- •Приближенные вычисления с помощью дифференциала функции одной переменной
- •Абсолютная и относительная погрешность вычислений
- •Приближенные вычисления с помощью полного дифференциала функции двух переменных
- •Метод касательных
избавиться от трехэтажности самой дроби. Полное решение и ответ в конце урока.
О том, как найти производную 2-го, 3-го и более высоких порядков от неявно заданной функции, читайте в статье Производные высших порядков.
Производная параметрически заданной функции
Не напрягаемся, в этом параграфе тоже всё достаточно просто. Можно записать общую формулу параметрически заданной функции, но, для того, чтобы было понятно, я сразу запишу конкретный пример. В параметрической форме функция задается двумя уравнениями:
. Частенько уравнения записывают не под фигурными скобками, а последовательно:
,
.
Переменная называется параметром и может принимать значения от «минус бесконечности» до «плюс бесконечности». Рассмотрим, например, значение
и подставим его в оба уравнения:
. Или по человечески: «если икс равен четырем,
то игрек равно единице». На координатной плоскости можно отметить точку , и эта точка будет соответствовать значению параметра
. Аналогично можно найти точку для любого значения параметра «тэ». Как и для «обычной» функции, для американских индейцев параметрически заданной функции все права тоже соблюдены: можно построить график, найти производные и т.д. Кстати, если есть надобность построить график параметрически заданной функции,

закачайте мою геометрическую прогу на странице Математические формулы и таблицы.
В простейших случаях есть возможность представить функцию в явном виде. Выразим из первого уравнения параметр:
– и подставим его во второе
уравнение: . В результате получена обыкновенная кубическая функция.
В более «тяжелых» случаях такой фокус не прокатывает. Но это не беда, потому что для нахождения производной параметрической функции существует формула:
Находим производную от «игрека по переменной тэ»:
Все правила дифференцирования и таблица производных справедливы, естественно, и для буквы , таким образом, какой-то новизны в самом процессе нахождения производных нет. Просто мысленно замените в таблице все «иксы» на букву «тэ».
Находим производную от «икса по переменной тэ»:
Теперь только осталось подставить найденные производные в нашу формулу:

Готово. Производная, как и сама функция, тоже зависит от параметра .
Что касается обозначений, то в формуле вместо записи можно было просто записать
без подстрочного индекса, поскольку это «обычная» производная «по икс». Но в литературе всегда встречается вариант
, поэтому я не буду отклоняться от стандарта.
Пример 6 Найти производную от функции, заданной параметрически
Используем формулу В данном случае:
Таким образом:
Особенностью нахождения производной параметрической функции является тот факт, что на каждом шаге результат выгодно максимально упрощать. Так, в рассмотренном примере при
нахождении я раскрыл скобки под корнем (хотя мог этого и не

делать). Велик шанс, что при подстановке и
в формулу многие вещи хорошо сократятся. Хотя встречаются, конечно, примеры и с корявыми ответами.
Пример 7
Найти производную от функции, заданной параметрически
Это пример для самостоятельного решения.
В статье Простейшие типовые задачи с производной мы рассматривали примеры, в которых требовалось найти вторую производную функции. Для параметрически заданной функции тоже можно найти вторую производную, и находится она по следующей
формуле: . Совершенно очевидно, что для того чтобы
найти вторую производную, нужно сначала найти первую производную.
Пример 8 Найти первую и вторую производные от функции, заданной
параметрически Сначала найдем первую производную. Используем формулу
В данном случае:

Подставляет найденные производные в формулу. В целях упрощений используем тригонометрическую формулу :
Я заметил, что в задаче на нахождение производной параметрической функции довольно часто в целях упрощений приходится использовать тригонометрические формулы. Помните их или держите под рукой, и не пропускайте возможность упростить каждый промежуточный результат и ответы. Зачем? Сейчас нам предстоит взять производную
от , и это явно лучше, чем находить производную от
.
Найдем вторую производную. Используем формулу: .
Посмотрим на нашу формулу. Знаменатель уже найден на предыдущем шаге. Осталось найти числитель – производную от первой производной по переменной «тэ»:

Осталось воспользоваться формулой:
Готово.
Для закрепления материала предлагаю еще пару примеров для самостоятельного решения.
Пример 9
Найти и
для функции, заданной параметрически
Пример 10
Найти и
для функции, заданной параметрически
Надеюсь, это занятие было полезным, и Вы теперь с лёгкость сможете находить производные от функций, заданных неявно и от параметрических функций.
Желаю успехов!
Решения и ответы:
Пример 3: Решение:

Таким образом: Пример 5: Решение:
Пример 7: Решение:

Используем формулу В данном случае:
Таким образом:
Пример 9: Решение: Найдем первую производную. Используем формулу: . В данном случае:
Найдем вторую производную, используя формулу .

Пример 10: Решение:
Используем формулу: . В данном случае:
Таким образом:
Вторая производная: