
- •Как найти производную? Примеры решений
- •Производная сложной функции. Примеры решений
- •Сложные производные
- •Логарифмическая производная
- •Производная степенно-показательной функции
- •Производная функции, заданной неявно
- •Производная параметрически заданной функции
- •Простейшие типовые задачи с производной. Примеры решений
- •Производная функции в точке
- •Уравнение касательной к графику функции
- •Как составить уравнение касательной в точке с абсциссой ?
- •Дифференциал функции одной переменной
- •Вторая производная
- •Производные высших порядков
- •производным высших порядков от произведения функций
- •Формула Лейбница
- •Производные высших порядков от функций, заданных неявно
- •Что такое производная? Определение и смысл производной функции
- •Понятие возрастания, убывания, максимума, минимума функции
- •Скорость изменения функции
- •Производная функции в точке
- •Геометрический смысл производной
- •Существование производной в точке и непрерывность функции
- •Дифференциал функции в точке и его геометрический смысл
- •Понятие производной функции
- •Производная по определению (через предел). Примеры решений
- •Как найти производную по определению?
- •Как найти уравнение нормали к графику функции в заданной точке?
- •Как найти уравнение касательной и уравнение нормали, если функция задана неявно?
- •Как найти уравнение касательной и уравнение нормали, если функция задана параметрически?
- •Приближенные вычисления с помощью дифференциала
- •Приближенные вычисления с помощью дифференциала функции одной переменной
- •Абсолютная и относительная погрешность вычислений
- •Приближенные вычисления с помощью полного дифференциала функции двух переменных
- •Метод касательных

Абсолютная и относительная погрешность вычислений
Абсолютная погрешность вычислений находится по формуле:
Знак модуля показывает, что нам без разницы, какое значение больше, а какое меньше. Важно, насколько далеко приближенный результат отклонился от точного значения в ту или иную сторону.
Относительная погрешность вычислений находится по формуле:
, или, то же
самое:
Относительная погрешность показывает, на сколько процентов приближенный результат отклонился от точного значения. Существует версия формулы и без домножения на 100%, но на практике я почти всегда вижу вышеприведенный вариант с процентами.
После короткой справки вернемся к нашей задаче, в которой мы вычислили приближенное значение функции с помощью дифференциала.
Вычислим точное значение функции с помощью микрокалькулятора: , строго говоря, значение всё
равно приближенное, но мы будем считать его точным. Такие уж задачи встречаются.
Вычислим абсолютную погрешность:
Вычислим относительную погрешность: , получены тысячные доли
процента, таким образом, дифференциал обеспечил просто отличное приближение.
Ответ: , абсолютная погрешность вычислений
, относительная погрешность вычислений
Следующий пример для самостоятельного решения:
Пример 4 Вычислить приближенно с помощью дифференциала значение
функции в точке
. Вычислить более
точное значение функции в данной точке, оценить абсолютную и относительную погрешность вычислений.
Примерный образец чистового оформления и ответ в конце урока.
Многие обратили внимание, что во всех рассмотренных примерах фигурируют корни. Это не случайно, в большинстве случаев в рассматриваемой задаче действительно предлагаются функции с корнями.
Но для страждущих читателей я раскопал небольшой пример с арксинусом:
Пример 5
Вычислить приближенно с помощью дифференциала значение функции в точке
Этот коротенький, но познавательный пример тоже для самостоятельного решения. А я немного отдохнул, чтобы с новыми силами рассмотреть особое задание:

Пример 6
Вычислить приближенно с помощью дифференциала , результат округлить до двух знаков после запятой.
Решение: Что нового в задании? По условию требуется округлить результат до двух знаков после запятой. Но дело не в этом, школьная задача округления, думаю, не представляет для вас сложностей. Дело в том, что у нас дан тангенс с аргументом, который выражен в градусах. Что делать, когда вам предлагается для решения тригонометрическая функция с градусами? Например,
и т. д.
Алгоритм решения принципиально сохраняется, то есть необходимо, как и в предыдущих примерах, применить формулу
Записываем очевидную функцию
Значение нужно представить в виде
. Серьёзную помощь окажет таблица значений тригонометрических функций. Кстати, кто её не распечатал, рекомендую это сделать, поскольку заглядывать туда придется на протяжении всего курса изучения высшей математики.
Анализируя таблицу, замечаем «хорошее» значение тангенса, которое близко располагается к 47 градусам:
Таким образом:
После предварительного анализа градусы необходимо перевести в радианы. Так, и только так!
В данном примере непосредственно из тригонометрической таблицы

можно выяснить, что . По формуле перевода градусов в радианы:
(формулы можно найти в той же таблице). Дальнейшее шаблонно:
Таким образом: (при вычислениях используем
значение ). Результат, как и требовалось по условию, округлён до двух знаков после запятой.
Ответ:
Пример 7
Вычислить приближенно с помощью дифференциала , результат округлить до трёх знаков после запятой.
Это пример для самостоятельного решения. Полное решение и ответ в конце урока.
Как видите, ничего сложного, градусы переводим в радианы и