
- •Как найти производную? Примеры решений
- •Производная сложной функции. Примеры решений
- •Сложные производные
- •Логарифмическая производная
- •Производная степенно-показательной функции
- •Производная функции, заданной неявно
- •Производная параметрически заданной функции
- •Простейшие типовые задачи с производной. Примеры решений
- •Производная функции в точке
- •Уравнение касательной к графику функции
- •Как составить уравнение касательной в точке с абсциссой ?
- •Дифференциал функции одной переменной
- •Вторая производная
- •Производные высших порядков
- •производным высших порядков от произведения функций
- •Формула Лейбница
- •Производные высших порядков от функций, заданных неявно
- •Что такое производная? Определение и смысл производной функции
- •Понятие возрастания, убывания, максимума, минимума функции
- •Скорость изменения функции
- •Производная функции в точке
- •Геометрический смысл производной
- •Существование производной в точке и непрерывность функции
- •Дифференциал функции в точке и его геометрический смысл
- •Понятие производной функции
- •Производная по определению (через предел). Примеры решений
- •Как найти производную по определению?
- •Как найти уравнение нормали к графику функции в заданной точке?
- •Как найти уравнение касательной и уравнение нормали, если функция задана неявно?
- •Как найти уравнение касательной и уравнение нормали, если функция задана параметрически?
- •Приближенные вычисления с помощью дифференциала
- •Приближенные вычисления с помощью дифференциала функции одной переменной
- •Абсолютная и относительная погрешность вычислений
- •Приближенные вычисления с помощью полного дифференциала функции двух переменных
- •Метод касательных
Приближенные вычисления с помощью дифференциала
На данном уроке мы рассмотрим широко распространенную задачу о
приближенном вычислении значения функции с помощью дифференциала. Здесь и далее речь пойдёт о дифференциалах первого порядка, для краткости я часто буду говорить просто «дифференциал». Задача о приближенных вычислениях с помощью дифференциала обладает жёстким алгоритмом решения, и, следовательно, особых трудностей возникнуть не должно. Единственное, есть небольшие подводные камни, которые тоже будут подчищены. Так что смело ныряйте головой вниз.
Кроме того, на странице присутствуют формулы нахождения абсолютной и относительной погрешность вычислений. Материал очень полезный, поскольку погрешности приходится рассчитывать и в других задачах. Физики, где ваши аплодисменты? =)
Для успешного освоения примеров необходимо уметь находить производные функций хотя бы на среднем уровне, поэтому если с дифференцированием совсем нелады, пожалуйста, начните с урока Как найти производную? Также рекомендую прочитать статью
Простейшие задачи с производной, а именно параграфы о
нахождении производной в точке и нахождении дифференциала в точке. Из технических средств потребуется микрокалькулятор с различными математическими функциями. Можно использовать Эксель, но в данном случае он менее удобен.
Практикум состоит из двух частей:
– Приближенные вычисления с помощью дифференциала функции одной переменной.