
- •brief contents
- •contents
- •foreword
- •preface
- •acknowledgments
- •about this book
- •Roadmap
- •Code conventions and downloads
- •Author Online
- •About the author
- •about the cover illustration
- •1 Why add Groovy to Java?
- •1.1 Issues with Java
- •1.1.1 Is static typing a bug or a feature?
- •1.1.2 Methods must be in a class, even if you don’t need or want one
- •1.1.3 Java is overly verbose
- •1.1.4 Groovy makes testing Java much easier
- •1.1.5 Groovy tools simplify your build
- •1.2 Groovy features that help Java
- •1.3 Java use cases and how Groovy helps
- •1.3.1 Spring framework support for Groovy
- •1.3.2 Simplified database access
- •1.3.3 Building and accessing web services
- •1.3.4 Web application enhancements
- •1.4 Summary
- •2 Groovy by example
- •2.1 Hello, Groovy
- •2.2 Accessing Google Chart Tools
- •2.2.1 Assembling the URL with query string
- •2.2.2 Transmitting the URL
- •2.2.3 Creating a UI with SwingBuilder
- •2.3 Groovy Baseball
- •2.3.1 Database data and Plain Old Groovy Objects
- •2.3.2 Parsing XML
- •2.3.3 HTML builders and groovlets
- •2.4 Summary
- •3 Code-level integration
- •3.1 Integrating Java with other languages
- •3.2 Executing Groovy scripts from Java
- •3.2.1 Using JSR223 scripting for the Java Platform API
- •3.2.2 Working with the Groovy Eval class
- •3.2.3 Working with the GroovyShell class
- •3.2.4 Calling Groovy from Java the easy way
- •3.2.5 Calling Java from Groovy
- •3.3 Summary
- •4 Using Groovy features in Java
- •4.1 Treating POJOs like POGOs
- •4.2 Implementing operator overloading in Java
- •4.3 Making Java library classes better: the Groovy JDK
- •4.4 Cool AST transformations
- •4.4.1 Delegating to contained objects
- •4.4.2 Creating immutable objects
- •4.4.3 Creating singletons
- •4.5 Working with XML
- •4.6 Working with JSON data
- •4.7 Summary
- •5 Build processes
- •5.1 The build challenge
- •5.2 The Java approach, part 1: Ant
- •5.3 Making Ant Groovy
- •5.3.1 The <groovy> Ant task
- •5.3.2 The <groovyc> Ant task
- •5.3.3 Writing your build in Groovy with AntBuilder
- •5.3.4 Custom build scripts with Gant
- •5.3.5 Ant summary
- •5.4 The Java approach, part 2: Maven
- •5.4.2 The GMaven project
- •5.4.3 Maven summary
- •5.5 Grapes and @Grab
- •5.6 The Gradle build system
- •5.6.1 Basic Gradle builds
- •5.6.2 Interesting configurations
- •5.7 Summary
- •6 Testing Groovy and Java projects
- •6.1 Working with JUnit
- •6.1.1 A Java test for the Groovy implementation
- •6.1.2 A Groovy test for the Java implementation
- •6.1.3 A GroovyTestCase test for a Java implementation
- •6.2 Testing scripts written in Groovy
- •6.2.1 Useful subclasses of GroovyTestCase: GroovyShellTestCase
- •6.2.2 Useful subclasses of GroovyTestCase: GroovyLogTestCase
- •6.3 Testing classes in isolation
- •6.3.1 Coerced closures
- •6.3.2 The Expando class
- •6.3.3 StubFor and MockFor
- •6.4 The future of testing: Spock
- •6.4.1 The Search for Spock
- •6.4.2 Test well, and prosper
- •6.4.4 The trouble with tribbles
- •6.4.5 Other Spock capabilities
- •6.5 Summary
- •7 The Spring framework
- •7.1 A Spring application
- •7.2 Refreshable beans
- •7.3 Spring AOP with Groovy beans
- •7.4 Inline scripted beans
- •7.5 Groovy with JavaConfig
- •7.6 Building beans with the Grails BeanBuilder
- •7.7 Summary
- •8 Database access
- •8.1 The Java approach, part 1: JDBC
- •8.2 The Groovy approach, part 1: groovy.sql.Sql
- •8.3 The Java approach, part 2: Hibernate and JPA
- •8.4 The Groovy approach, part 2: Groovy and GORM
- •8.4.1 Groovy simplifications
- •8.5 Groovy and NoSQL databases
- •8.5.1 Populating Groovy vampires
- •8.5.2 Querying and mapping MongoDB data
- •8.6 Summary
- •9 RESTful web services
- •9.1 The REST architecture
- •9.3 Implementing JAX-RS with Groovy
- •9.4 RESTful Clients
- •9.5 Hypermedia
- •9.5.1 A simple example: Rotten Tomatoes
- •9.5.2 Adding transitional links
- •9.5.3 Adding structural links
- •9.5.4 Using a JsonBuilder to control the output
- •9.6 Other Groovy approaches
- •9.6.1 Groovlets
- •9.6.2 Ratpack
- •9.6.3 Grails and REST
- •9.7 Summary
- •10 Building and testing web applications
- •10.1 Groovy servlets and ServletCategory
- •10.2 Easy server-side development with groovlets
- •10.2.1 A “Hello, World!” groovlet
- •10.2.2 Implicit variables in groovlets
- •10.3.2 Integration testing with Gradle
- •10.3.3 Automating Jetty in the Gradle build
- •10.4 Grails: the Groovy “killer app”
- •10.4.1 The quest for the holy Grails
- •10.5 Summary
- •A.1 Installing a JDK
- •A.2 Installing Groovy
- •A.3 Testing your installation
- •A.4 IDE support
- •A.5 Installing other projects in the Groovy ecosystem
- •B.1 Scripts and the traditional example
- •B.2 Variables, numbers, and strings
- •B.2.1 Numbers
- •B.2.2 Strings and Groovy strings
- •B.3 Plain Old Groovy Objects
- •B.4 Collections
- •B.4.1 Ranges
- •B.4.2 Lists
- •B.4.3 Maps
- •B.5 Closures
- •B.6 Loops and conditionals
- •B.6.1 Loops
- •B.6.2 Conditionals
- •B.6.3 Elvis
- •B.6.4 Safe de-reference
- •B.7 File I/O
- •B.8.1 Parsing and slurping XML
- •B.8.2 Generating XML
- •B.8.3 Validation
- •B.9 JSON support
- •B.9.1 Slurping JSON
- •B.9.2 Building JSON
- •index
- •Symbols

302 APPENDIX B Groovy by feature
Sex at noon taxes
Flee to me, remote elf!
Doc, note: I dissent. A fast never prevents a fatness. I diet on cod.
'''
palindromes.eachLine {
String str = it.trim().replaceAll(/\W/,'').toLowerCase() assert str.reverse() == str
}
Once again, a little Groovy code packs a lot of power. The method eachLine has been added to the String class to break multiline strings at line breaks. It takes a closure as an argument. In this case, no dummy variables were used in the closure, so each string is assigned to the default variable called it.
THE IT VARIABLE In a closure, if no dummy name is specified the term it is used by default.
The trim method is applied to the line to remove any leading and trailing spaces. Then the replaceAll method is used to replace all non-word characters with an empty string. Finally, the string is converted to lowercase.
The assert test uses another method added by Groovy to String, called reverse. Java has a reverse method in StringBuffer, but not String. Groovy adds the reverse method to String for convenience.
Groovy adds lots of methods to the Java standard libraries. Collectively these are known as the Groovy JDK and are one of the best features of Groovy. The Groovy documentation includes GroovyDocs for both the Groovy standard library and the Groovy JDK.
THE GROOVY JDK Through its metaprogramming capabilities, Groovy adds many convenient methods to the standard Java libraries. These additional methods are known as the Groovy JDK.
In summary, Groovy uses numbers and objects and has both regular and parameterized strings with additional methods. Another area where Groovy greatly simplifies Java is collections.
B.3 Plain Old Groovy Objects
Java classes with getters and setters for the attributes are often known as POJOs, or Plain Old Java Objects. In Groovy, the same classes are Plain Old Groovy Objects, or POGOs.7 POGOs have additional characteristics that are discussed in this section.
Consider the following Person class in Groovy:
7Python occasionally uses the term POPOs, which sounds vaguely disgusting. If you really want to annoy a Ruby developer, refer to POROs. Ruby people hate anything that sounds like Java.
www.it-ebooks.info