
- •brief contents
- •contents
- •foreword
- •preface
- •acknowledgments
- •about this book
- •Roadmap
- •Code conventions and downloads
- •Author Online
- •About the author
- •about the cover illustration
- •1 Why add Groovy to Java?
- •1.1 Issues with Java
- •1.1.1 Is static typing a bug or a feature?
- •1.1.2 Methods must be in a class, even if you don’t need or want one
- •1.1.3 Java is overly verbose
- •1.1.4 Groovy makes testing Java much easier
- •1.1.5 Groovy tools simplify your build
- •1.2 Groovy features that help Java
- •1.3 Java use cases and how Groovy helps
- •1.3.1 Spring framework support for Groovy
- •1.3.2 Simplified database access
- •1.3.3 Building and accessing web services
- •1.3.4 Web application enhancements
- •1.4 Summary
- •2 Groovy by example
- •2.1 Hello, Groovy
- •2.2 Accessing Google Chart Tools
- •2.2.1 Assembling the URL with query string
- •2.2.2 Transmitting the URL
- •2.2.3 Creating a UI with SwingBuilder
- •2.3 Groovy Baseball
- •2.3.1 Database data and Plain Old Groovy Objects
- •2.3.2 Parsing XML
- •2.3.3 HTML builders and groovlets
- •2.4 Summary
- •3 Code-level integration
- •3.1 Integrating Java with other languages
- •3.2 Executing Groovy scripts from Java
- •3.2.1 Using JSR223 scripting for the Java Platform API
- •3.2.2 Working with the Groovy Eval class
- •3.2.3 Working with the GroovyShell class
- •3.2.4 Calling Groovy from Java the easy way
- •3.2.5 Calling Java from Groovy
- •3.3 Summary
- •4 Using Groovy features in Java
- •4.1 Treating POJOs like POGOs
- •4.2 Implementing operator overloading in Java
- •4.3 Making Java library classes better: the Groovy JDK
- •4.4 Cool AST transformations
- •4.4.1 Delegating to contained objects
- •4.4.2 Creating immutable objects
- •4.4.3 Creating singletons
- •4.5 Working with XML
- •4.6 Working with JSON data
- •4.7 Summary
- •5 Build processes
- •5.1 The build challenge
- •5.2 The Java approach, part 1: Ant
- •5.3 Making Ant Groovy
- •5.3.1 The <groovy> Ant task
- •5.3.2 The <groovyc> Ant task
- •5.3.3 Writing your build in Groovy with AntBuilder
- •5.3.4 Custom build scripts with Gant
- •5.3.5 Ant summary
- •5.4 The Java approach, part 2: Maven
- •5.4.2 The GMaven project
- •5.4.3 Maven summary
- •5.5 Grapes and @Grab
- •5.6 The Gradle build system
- •5.6.1 Basic Gradle builds
- •5.6.2 Interesting configurations
- •5.7 Summary
- •6 Testing Groovy and Java projects
- •6.1 Working with JUnit
- •6.1.1 A Java test for the Groovy implementation
- •6.1.2 A Groovy test for the Java implementation
- •6.1.3 A GroovyTestCase test for a Java implementation
- •6.2 Testing scripts written in Groovy
- •6.2.1 Useful subclasses of GroovyTestCase: GroovyShellTestCase
- •6.2.2 Useful subclasses of GroovyTestCase: GroovyLogTestCase
- •6.3 Testing classes in isolation
- •6.3.1 Coerced closures
- •6.3.2 The Expando class
- •6.3.3 StubFor and MockFor
- •6.4 The future of testing: Spock
- •6.4.1 The Search for Spock
- •6.4.2 Test well, and prosper
- •6.4.4 The trouble with tribbles
- •6.4.5 Other Spock capabilities
- •6.5 Summary
- •7 The Spring framework
- •7.1 A Spring application
- •7.2 Refreshable beans
- •7.3 Spring AOP with Groovy beans
- •7.4 Inline scripted beans
- •7.5 Groovy with JavaConfig
- •7.6 Building beans with the Grails BeanBuilder
- •7.7 Summary
- •8 Database access
- •8.1 The Java approach, part 1: JDBC
- •8.2 The Groovy approach, part 1: groovy.sql.Sql
- •8.3 The Java approach, part 2: Hibernate and JPA
- •8.4 The Groovy approach, part 2: Groovy and GORM
- •8.4.1 Groovy simplifications
- •8.5 Groovy and NoSQL databases
- •8.5.1 Populating Groovy vampires
- •8.5.2 Querying and mapping MongoDB data
- •8.6 Summary
- •9 RESTful web services
- •9.1 The REST architecture
- •9.3 Implementing JAX-RS with Groovy
- •9.4 RESTful Clients
- •9.5 Hypermedia
- •9.5.1 A simple example: Rotten Tomatoes
- •9.5.2 Adding transitional links
- •9.5.3 Adding structural links
- •9.5.4 Using a JsonBuilder to control the output
- •9.6 Other Groovy approaches
- •9.6.1 Groovlets
- •9.6.2 Ratpack
- •9.6.3 Grails and REST
- •9.7 Summary
- •10 Building and testing web applications
- •10.1 Groovy servlets and ServletCategory
- •10.2 Easy server-side development with groovlets
- •10.2.1 A “Hello, World!” groovlet
- •10.2.2 Implicit variables in groovlets
- •10.3.2 Integration testing with Gradle
- •10.3.3 Automating Jetty in the Gradle build
- •10.4 Grails: the Groovy “killer app”
- •10.4.1 The quest for the holy Grails
- •10.5 Summary
- •A.1 Installing a JDK
- •A.2 Installing Groovy
- •A.3 Testing your installation
- •A.4 IDE support
- •A.5 Installing other projects in the Groovy ecosystem
- •B.1 Scripts and the traditional example
- •B.2 Variables, numbers, and strings
- •B.2.1 Numbers
- •B.2.2 Strings and Groovy strings
- •B.3 Plain Old Groovy Objects
- •B.4 Collections
- •B.4.1 Ranges
- •B.4.2 Lists
- •B.4.3 Maps
- •B.5 Closures
- •B.6 Loops and conditionals
- •B.6.1 Loops
- •B.6.2 Conditionals
- •B.6.3 Elvis
- •B.6.4 Safe de-reference
- •B.7 File I/O
- •B.8.1 Parsing and slurping XML
- •B.8.2 Generating XML
- •B.8.3 Validation
- •B.9 JSON support
- •B.9.1 Slurping JSON
- •B.9.2 Building JSON
- •index
- •Symbols

Cool AST transformations |
81 |
return new ImmutablePoint(x:xval,y:yval)
}
}
Now the Java client can instantiate ImmutablePointFactory and then invoke the newImmutablePoint factory method, supplying the desired x and y values.
Everything works, that is, until you succumb to the temptation to follow standard practices in the Java API and make the factory class a singleton. That’s the subject of the next subsection.
4.4.3Creating singletons
When a new Java developer first discovers the wide, wonderful world of design patterns, one of the first ones they tend to encounter is Singleton. It’s an easy pattern to learn, because it’s easy to implement and only involves a single class. If you only want one instance of a class, make the constructor private, add a static final instance variable of the class type, and add a static getter method to retrieve it. How cool is that?
Unfortunately, our poor new developer has wandered into a vast jungle, full of monsters to attack the unwary. First of all, implementing a true singleton isn’t nearly as easy as it sounds. If nothing else, there are thread safety issues to worry about, and because it seems no Java program is every truly thread-safe the results get ugly fast.
Then there’s the fact that a small but very vocal contingent of developers view the whole Singleton design pattern as an anti-pattern. They trash it for a variety of reasons, and they tend to be harsh in their contempt for both the pattern and anyone foolish or naïve enough to use it.
Fortunately I’m not here to resolve that issue. My job is to show you how Groovy can help you as a Java developer, and I can do that here. As you may have anticipated based on the title of this section, there’s an AST transformation called @Singleton.
To use it all I have to do is add the annotation to my class. Here I’ve added it to the
ImmutablePointFactory from earlier:
@Singleton
class ImmutablePointFactory {
ImmutablePoint newImmutablePoint(xval,yval) { return new ImmutablePoint(x:xval,y:yval)
}
}
Again, I can’t resist saying it: that was easy. The result is that the class now contains a static property called instance, which contains, naturally enough, the one and only instance of the class. Also, everything is implemented in as correct a manner as possible by the author10 of the transformation. In Groovy code I can now write the following:
ImmutablePoint p = ImmutablePointFactory.instance.newImmutablePoint(3,4)
10Paul King, one of the coauthors of Groovy in Action (Manning, 2007) and a fantastic developer. Let me be blunt about this: everything Paul King writes is good. He tends to add his presentations to SlideShare.net as well, so go read them as soon as humanly possible.
www.it-ebooks.info