
- •brief contents
- •contents
- •foreword
- •preface
- •acknowledgments
- •about this book
- •Roadmap
- •Code conventions and downloads
- •Author Online
- •About the author
- •about the cover illustration
- •1 Why add Groovy to Java?
- •1.1 Issues with Java
- •1.1.1 Is static typing a bug or a feature?
- •1.1.2 Methods must be in a class, even if you don’t need or want one
- •1.1.3 Java is overly verbose
- •1.1.4 Groovy makes testing Java much easier
- •1.1.5 Groovy tools simplify your build
- •1.2 Groovy features that help Java
- •1.3 Java use cases and how Groovy helps
- •1.3.1 Spring framework support for Groovy
- •1.3.2 Simplified database access
- •1.3.3 Building and accessing web services
- •1.3.4 Web application enhancements
- •1.4 Summary
- •2 Groovy by example
- •2.1 Hello, Groovy
- •2.2 Accessing Google Chart Tools
- •2.2.1 Assembling the URL with query string
- •2.2.2 Transmitting the URL
- •2.2.3 Creating a UI with SwingBuilder
- •2.3 Groovy Baseball
- •2.3.1 Database data and Plain Old Groovy Objects
- •2.3.2 Parsing XML
- •2.3.3 HTML builders and groovlets
- •2.4 Summary
- •3 Code-level integration
- •3.1 Integrating Java with other languages
- •3.2 Executing Groovy scripts from Java
- •3.2.1 Using JSR223 scripting for the Java Platform API
- •3.2.2 Working with the Groovy Eval class
- •3.2.3 Working with the GroovyShell class
- •3.2.4 Calling Groovy from Java the easy way
- •3.2.5 Calling Java from Groovy
- •3.3 Summary
- •4 Using Groovy features in Java
- •4.1 Treating POJOs like POGOs
- •4.2 Implementing operator overloading in Java
- •4.3 Making Java library classes better: the Groovy JDK
- •4.4 Cool AST transformations
- •4.4.1 Delegating to contained objects
- •4.4.2 Creating immutable objects
- •4.4.3 Creating singletons
- •4.5 Working with XML
- •4.6 Working with JSON data
- •4.7 Summary
- •5 Build processes
- •5.1 The build challenge
- •5.2 The Java approach, part 1: Ant
- •5.3 Making Ant Groovy
- •5.3.1 The <groovy> Ant task
- •5.3.2 The <groovyc> Ant task
- •5.3.3 Writing your build in Groovy with AntBuilder
- •5.3.4 Custom build scripts with Gant
- •5.3.5 Ant summary
- •5.4 The Java approach, part 2: Maven
- •5.4.2 The GMaven project
- •5.4.3 Maven summary
- •5.5 Grapes and @Grab
- •5.6 The Gradle build system
- •5.6.1 Basic Gradle builds
- •5.6.2 Interesting configurations
- •5.7 Summary
- •6 Testing Groovy and Java projects
- •6.1 Working with JUnit
- •6.1.1 A Java test for the Groovy implementation
- •6.1.2 A Groovy test for the Java implementation
- •6.1.3 A GroovyTestCase test for a Java implementation
- •6.2 Testing scripts written in Groovy
- •6.2.1 Useful subclasses of GroovyTestCase: GroovyShellTestCase
- •6.2.2 Useful subclasses of GroovyTestCase: GroovyLogTestCase
- •6.3 Testing classes in isolation
- •6.3.1 Coerced closures
- •6.3.2 The Expando class
- •6.3.3 StubFor and MockFor
- •6.4 The future of testing: Spock
- •6.4.1 The Search for Spock
- •6.4.2 Test well, and prosper
- •6.4.4 The trouble with tribbles
- •6.4.5 Other Spock capabilities
- •6.5 Summary
- •7 The Spring framework
- •7.1 A Spring application
- •7.2 Refreshable beans
- •7.3 Spring AOP with Groovy beans
- •7.4 Inline scripted beans
- •7.5 Groovy with JavaConfig
- •7.6 Building beans with the Grails BeanBuilder
- •7.7 Summary
- •8 Database access
- •8.1 The Java approach, part 1: JDBC
- •8.2 The Groovy approach, part 1: groovy.sql.Sql
- •8.3 The Java approach, part 2: Hibernate and JPA
- •8.4 The Groovy approach, part 2: Groovy and GORM
- •8.4.1 Groovy simplifications
- •8.5 Groovy and NoSQL databases
- •8.5.1 Populating Groovy vampires
- •8.5.2 Querying and mapping MongoDB data
- •8.6 Summary
- •9 RESTful web services
- •9.1 The REST architecture
- •9.3 Implementing JAX-RS with Groovy
- •9.4 RESTful Clients
- •9.5 Hypermedia
- •9.5.1 A simple example: Rotten Tomatoes
- •9.5.2 Adding transitional links
- •9.5.3 Adding structural links
- •9.5.4 Using a JsonBuilder to control the output
- •9.6 Other Groovy approaches
- •9.6.1 Groovlets
- •9.6.2 Ratpack
- •9.6.3 Grails and REST
- •9.7 Summary
- •10 Building and testing web applications
- •10.1 Groovy servlets and ServletCategory
- •10.2 Easy server-side development with groovlets
- •10.2.1 A “Hello, World!” groovlet
- •10.2.2 Implicit variables in groovlets
- •10.3.2 Integration testing with Gradle
- •10.3.3 Automating Jetty in the Gradle build
- •10.4 Grails: the Groovy “killer app”
- •10.4.1 The quest for the holy Grails
- •10.5 Summary
- •A.1 Installing a JDK
- •A.2 Installing Groovy
- •A.3 Testing your installation
- •A.4 IDE support
- •A.5 Installing other projects in the Groovy ecosystem
- •B.1 Scripts and the traditional example
- •B.2 Variables, numbers, and strings
- •B.2.1 Numbers
- •B.2.2 Strings and Groovy strings
- •B.3 Plain Old Groovy Objects
- •B.4 Collections
- •B.4.1 Ranges
- •B.4.2 Lists
- •B.4.3 Maps
- •B.5 Closures
- •B.6 Loops and conditionals
- •B.6.1 Loops
- •B.6.2 Conditionals
- •B.6.3 Elvis
- •B.6.4 Safe de-reference
- •B.7 File I/O
- •B.8.1 Parsing and slurping XML
- •B.8.2 Generating XML
- •B.8.3 Validation
- •B.9 JSON support
- •B.9.1 Slurping JSON
- •B.9.2 Building JSON
- •index
- •Symbols

62 |
CHAPTER 3 Code-level integration |
3.2.5Calling Java from Groovy
Actually, this is so easy it hardly deserves a section at all. I’ve already shown it more than once. Remember the earlier example using the Google V2 geocoder (reproduced here for convenience)?
def address = [street,city,state].collect { |
Java SE library code |
|||||
|
|
|
|
|
|
|
URLEncoder.encode(it,'UTF-8') |
|
|||||
|
|
|||||
|
|
}.join(',')
def params = [q:address,sensor:false,output:'csv',key:'ABQIAAAAaUT…'] def base = 'http://maps.google.com/maps/geo?'
def url = base + params.collect { k,v -> "$k=$v" }.join('&') (code,level,lat,lng) = url.toURL().text.split(',')
The integration is already here through the use of the library class and various Java methods. I needed to pass the address to Google in URL-encoded form. To do that I ran each element of the address (street, city, and state) through the java.net.URLEncoder, using its encode method. In other words, the Groovy script used a Java library class and called one of its methods.
Lessons learned (integration)
1Groovy scripts can be called with Java alone using the JSR 223 script engine.
2The Groovy Eval class makes calling scripts involving zero, one, two, or three arguments simple.
3The GroovyShell and Binding classes are used to programmatically set input variables, invoke a script, and retrieve its result.
4The easiest way to call Groovy from Java is to make a Groovy class, compile it, instantiate it in Java, and call the methods as usual.
The combination of Java and Groovy is also emphasized in Figure 3.3, shown with the original listing. In that figure each Java method and each Groovy method is indicated with arrows.
The fact that the script mixes both Java and Groovy is true of practically any Groovy script. Groovy rests on the foundation of the Java libraries. It enhances those libraries, as you’ll see in section 4.3 on the Groovy JDK, but there’s no need to reinvent the flat tire.8 Groovy is perfectly happy to use any Java classes you supply, and it makes many of them better.
COMPILE WITH GROOVYC Whenever you mix Java and Groovy, compile everything with groovyc. Let groovyc handle all the cross-compiler issues.
In the next chapter I’ll look at some of the ways Groovy improves Java.
8 Re-inventing the flat tire is what happens when you try to re-invent the wheel and get it wrong.
www.it-ebooks.info