Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
лекции по биологии / Лекция 8. Репарация, транскрипция.doc
Скачиваний:
330
Добавлен:
19.03.2016
Размер:
426.5 Кб
Скачать

5. Посттранскрипционные процессы. Процессинг (созревание рнк).

Это совокупность процессов обеспечивающих превращение синтезированной РНК (РНК-транскрипта) в функционально активные РНК (зрелые РНК), которые могут быть использованы при синтезе белков. Сами РНК-транскрипты функционально не активные. Процесс характерен для эукариот.

В результате процессинга изменяется структура и химическая организация РНК. РНК-транскрипт до образования зрелой РНК носит название про-иРНК(или в зависимости от вида РНК – про-тРНК, про-рРНК), т.е. предшественница РНК. Практически все РНК-транскрипты эукариот и прокариот(за исключением иРНК прокариот)подвергаются процессингу. Превращение РНК-транскрипта в зрелую РНК начинается в ядре, когда синтез РНК ещё не закончен и она не отделилась от ДНК. В зависимости от механизмов различают несколько этапов созревания РНК.

  1. Взаимодействие про-иРНК с белком.

  2. Метилирование про-иРНК.

  3. Кэпирование 5’-конца.

  4. Полиаденилирование.

  5. Сплайсинг .

Графическая последовательность этапов изображена на рисунке 58. Следует отметить, что в живых организмах все вышеперечисленные процессы идут параллельно друг другу.

а. Взаимодействие про-иРНК с белком.

У бактерий ещё до окончания транскрипции 5конец транскрипта сразу же соединяется с рибосомой и иРНК включается в трансляцию. Поэтому, для бактериальной иРНК практически никакая модификация не требуется. У эукариот, синтезированный транскрипт выходит из ядра, попадает в цитоплазму и там соединиться с рибосомой. На своём пути он должен быть ограждён от случайных встреч с сильными реагентами и, в тоже время быть, доступен ферментам процессинга. Поэтому РНК-транскрипт сразу же по мере удлинения взаимодействует с белком. Здесь уместна аналогия – РНК-транскрипт располагается на белке как на операционном столе, он фиксируется химическими связями, одновременно в нём становятся доступными места модификации. РНК, связанная с белком, носит название рибонуклеопротеид ( информосома). В такой форме транскрипт находится в ядре. При выходе из ядра одни РНК продолжают оставаться в соединении с белком, другие выходят из комплекса и принимают участие в трансляции.

б. Метилирование про-иРНК.

Чаще всего происходит у бактерий, у которых имеется специальный аппарат защиты от чужеродной

ДНК (вирусной, фаговой). Этот аппарат состоит из целого ряда ферментов разрезающих чужеродную ДНК или РНК в определённых сайтах в которой находится специфическая последовательность нуклеотидов. Ферменты носят название – рестриктазы. Понятно, что собственный, только что синтезированный РНК-транскрипт, также может быть подвергнут атаке рестриктаз. Чтобы это не случилось специальные ферменты, называемые метилазы,метилируют собственный РНК-транскрипт в тех сайтах, которые могут быть разрезаны собственными ферментами. У эукариот РНК-транскрипт метилируется в меньшей степени.

Промотор Терминатор

Транскрипция

Про-иРНК

Про-иРНК фикси- Белок

рванная на белке

Метилирование про-иРНК

Кэпирование про-иРНК

Полиаденилирование

Сплайсинг (см. далее)

Рис. 58. Схема основных моментов процессинга.

в. Кэпирование 5’конца.

Заключается в химическом и конформационном изменении

5’конца синтезированной РНК. Кэпирование происходит в момент синтеза РНК, ещё до её отделения. Процесс заключается в присоединении к свободному концу про-РНК специальных химических веществ, которые изменяют конформацию концевого участка. Кэпирование необходимо для инициации процесса трансляции.

Специальные ферменты присоединяют к 5’концу про-иРНК ГДФ (гуанозиндифосфат), а затем метилируют его.

ГДФ

5’ про-иРНК

СН3

КЭП = ГДФ + СН3

Рис.59. Структура КЭПа на 5’конце пре-иРНК эукариот.

Функции КЭПа.

  1. Инициирует синтез белка.

  2. Предохраняет про-иРНК от распада.

  3. Участвует в удалении интронов.

г. Полиаденилирование.

Это процесс присоединения к 3’ концу про-иРНК 100 – 200 остатков адениловой кислоты. Эти остатки носят название поли-А последовательности (поли-А хвосты). Полиаденилированию подвергаются не все про-иРНК. Например, молекулы всех типов гистонов не содержат поли-А последовательности. Полиаденилирование предохраняет иРНК от разрушения.

На растущей цепи и-РНК имеется специальная последовательность нуклеотидов (ААУААА). Особый фермент ( полиА-полимераза) находит это сочетание нуклеотидов, разрезает про-иРНК в этом месте и формирует полиадениловый хвостик.

Значение поли –А последовательностей:

      1. Облегчают выход иРНК из ядра в цитоплазму.

      2. Предохраняют иРНК от разрушения.

Недавно было выявлено ещё одно интересное свойство поли-А последовательностей – они участвуют в терминации синтеза про-иРНК. РНК-полимераза, формируя последовательность ААУААА в про-иРНК, получает сигнал о завершении синтеза РНК-транскрипта. Но синтез сразу не прекращается. Полная остановка его наступает после того, как РНК-полимераза встречает на матричной нити ДНК специфическую последовательность нуклеотидов (у разных генов она разная), которая и даёт окончательный сигнал о прекращении синтеза РНК.

ГТФ ПолиА - последовательность

рАрАрАрАрАрАрАрА-ОН

СН3

КЭП = ГТФ + СН3

Рис. 60. Структура КЭПа на 5’конце про-иРНК эукариот и полиадениловая последовательность на 3’конце про -иРНК.

д. Сплайсинг.

В РНК-транскрипте содержится определённое количество нуклеотидных последовательностей, которые были необходимы для успешного завершения трансляции и последующей модификации транскрипта (кэпирования, полиаденилирования и т.д.). Для выполнения основной роли РНК в цитоплазме – трансляции, эти последовательности не только не будут иметь функционального значения, но могут помешать нормальному течению синтеза белка. Поэтому в клетке предусмотрен механизм освобождения первичного транскрипта от целого ряда последовательностей, не имеющих решающего значения в трансляции.

К таким последовательностям прежде всего относят интроны.

Ген, с которого транскрибировалась про-иРНК содержит кодирующие и некодирующие последовательности. Кодирующие последовательности гена определяют аминокислоту и их последовательность в белке. Не кодирующие последовательности таким свойством не обладают. Кодирующие и некодирующие последовательности в гене чередуются, и их количество зависит от индивидуальных генов. В первичном транскрипте также содержатся кодирующие и некодирующие последовательности. Такая организация генов и про-РНК характерна для эукариот. Некодирующие последовательности про-иРНК носят название интроны, а кодирующие –экзоны. Длина интронов может быть от 50 до 12000 нуклеотидов. Ген начинается и

кончается экзоном. Прерывистое строение гена характерно для большинства эукариот. Интроны могут содержать все виды РНК – иРНК, тРНК, рРНК.

Вся совокупность экзонов (кодирующих белки) в геноме человека занимают всего 1,1 – 1,4 %. Средний ген человека содержит 9 интронов. По мере упрощения

организации организмов совокупная величина их экзонов возрастает (например у бактерий она равна 86%).

В вырезании интронов из РНК-транскрипта и сшивании оставшихся экзонов, принимает участие многокомпонентный комплекс. Основными его составляющими являются малые ядерные РНК (мяРНК) и белки-ферменты.

В целом комплекс носит название малые ядерные рибонуклеопротеиды, мяРНП или сплайосома. Сам процесс достаточно сложен и состоит из нескольких этапов (см. рис. 58).

1. Формирование сплайосомы. К началу и концу интрона прикрепляются фрагменты белка и мяРНК (рис. 56, Д) формируя сплайосому. (рис. 56, Д) Прикрепление комплекса мяРНП (рис. 56, Е).

Экзон 1 Интрон Экзон 2

А

Д

Б

Е

В

Петля

интрона вырезана

Г

Ж

Рис. 61. Схема сплайсинга (объяснение в тексте).

  1. Сближение соседних экзонов, за счёт образования петли интрона. Разрезание на границе экзон-интрон и соединение соседних (первого и второго) экзонов(рис. 56, В).

  2. Удаление и разрушение петли и сплайосоме (рис. 56, Г, Ж).

Необходимо отметить, что при повреждении (мутации) интрона сплайсинг может быть не закончен, интрон не вырезан и конченый продукт – иРНК будет нести несвойственные ей последовательности нуклеотидов. Понятно, что это может привести к нарушению трансляции и выключению из метаболизма определённого белка

е. Альтернативный сплайсинг.

Такой тип сплайсинга происходит при экспрессии одного и того же гена в разных тканях.

Сущность его в том, что один и тот же участок гена в разных тканях может выступать в качестве интрона и экзона. Это приводит к образованию разных иРНК, которые кодируют белки с различной ферментативной активностью.

Так в клетках щитовидной железы синтезируется гормон кальцитонин. Он тормозит высвобождение кальция из костей. Ген, контролирующий синтез каль-

Ген, контролирующий кальцитонин

э и э и э и э и э и э

ДНК

1 2 3 4 5 6

э и э и э и э и э и э

про-иРНК

1 2 3 4 5 6

В щитовидной железе В клетках головного мозга

иРНК

1 2 3 4 1 2 3 5 6

Кальцитонин Кальцитонинподобный белок

Рис.62. Альтернативный сплайсинг кальцитонина и кальцитонин-подобного белка.

цитонина, состоит из 6 экзонов, первичный транскрипт этого гена ( про-иРНК) также состоит из 6 экзонов (рис. 62). Из первичного транскрипта формируется зрелая иРНК содержащая 4 экзона – 1,2,3,4. Экзоны № 5 и 6 были прочитаны как интроны и вырезаны. На основе такой и РНК синтезируется кальцитонин. В клетках головного мозга из первичного транскрипта, содержащего 6 экзонов, формируется зрелая иРНК, состоящая из 5 экзонов – 1,2,3,5,6. Четвёртый экзон был вырезан как интрон. Такая иРНК контролирует синтез кальцитонинподобного белка, отвечающего за вкусовое восприятие.

Другой ген Icarus ( в названного в честь легендарного Икара) способен обеспечить за счёт альтернативного сплайсинга синтез 6 различных полипептидов. Кроме этого полипептиды образуют между собой в клетке около 20 различные ансамбли из одних и тех же полипептидов или различных.

Нарушение механизма сплайсинга может привести к патологическим состояниям, которые носят общее название талассемии. К ним относят заболевания связанные с частичным или полным подавление синтеза одной из цепей гемоглобин ( α- или β-цепей). Например, болезни, связанные с недостатком синтеза β -цепи гемоглобина, могут возникнуть в результате мутаций в двух участка гена, кодирующего β-цепь – в сайте ответственном за полиаденилирование и в одном из интронов. В первом случае нарушается процесс формирования полиаденилового хвостика и формируется неполноценная β-цепь гемоглобина. Во втором случае сплайосома не способна вырезать повреждённый интрон и зрелая иРНК β-цепи гемоглобина не образуется. В любом случае нормальная функция эритроцитов будет существенно нарушена.

МЗ. Процессинг (или созревание РНК) это процесс превращения только что синтезированной, не активной РНК (про-иРНК) в функционально активную РНК. Процесс связан со структурными и химическими модификациями про-иРНК. Происходит в ядре до момента выхода РНК в цитоплазму. Состоит из нескольких этапов: присоединение про-иРНК к белку, метилирование некоторых оснований, маркировка одного из концов, полиаденилирование другого (противоположного) конца, вырезания интронов и сшивание экзонов. Последние два процесса носят название сплайсинг.

Вопросы к экзаменам.

1. Каким образом ферменты определяют большинство мест, где имеется повреждение молекулы ДНК?

ОТВЕТ. В месте повреждения молекулы ДНК в большинстве случаев наступает локальная денатурация. Её и определяют ферменты.

2. Что происходит в месте повреждения молекулы ДНК ?

ОТВЕТ. В месте повреждения наступает локальная денатурация.

3. На основании чего ферменты репарации восстанавливают необходимую последовательность нуклеотидов в месте повреждения одной нити ДНК?

ОТВЕТ. На основании принципа комплементарности к нуклеотидам оппозитного участка нити ДНК.

4. На основании чего ДНК-полимераза правильно застраивает нуклеотидами бреши в повреждённой нити ДНК ?

ОТВЕТ. На основании принципа комплементарности нуклеотидов застраиваемой цепи к нуклеотидам оппозитной нити.

5. Какой тип репарации осуществляется ферментом, который активируется фотоном?

ОТВЕТ. Фотореактивация.

6. Какой фермент осуществляет репарацию используя энергию солнца?

ОТВЕТ. Фотолиаза.

  1. Какой фермент принимает непосредственное участие в синтезе молекуле РНК?

ОТВЕТ. ДНК-зависимая РНК-полимераза или РНК-полимераза.

  1. Перечислите периоды транскрипции.

ОТВЕТ. Инициация, элонгация, терминация.

  1. Из каких компонентов состоит инициаторный комплекс в процессе транскрипции?

ОТВЕТ. Из специального белка осевшего на промотор, РНК-полимеразы и транскрипционных факторов.

9. Как называется участок ДНК, где формируется инициаторный комплекс в процессе транскрипции?

ОТВЕТ. На промоторе.

10. Как называется последовательность нуклеотидов у прокариот, которую определяет специальный белок осаждающий на промоторе в период инициации транскрипции?

ОТВЕТ. Блок Прибнова.

11. Как называется последовательность нуклеотидов у эукариот, которую определяет специальный белок осаждающий на промоторе в период инициации транскрипции?

ОТВЕТ. ТАТА-бокс.

12. Где в молекуле ДНК располагается блок Прибнова у прокариот?

ОТВЕТ. На промоторе.

13. Где в молекуле ДНК располагается ТАТА-бокс у эукариот?

ОТВЕТ. На промоторе.

14. Как называется ферментативный комплекс, который формирует транскрипционный глазок?

ОТВЕТ. Инициаторный комплекс.

15. Как называется участок молекулы ДНК с которого начинается синтез РНК ?

ОТВЕТ. Стартовой точкой, сайт начала транскрипции.

16. Назовите нуклеотиды, которые находятся в терминаторе и возможно участвуют в прекращении транскрипции.

ОТВЕТ. Г,Ц.

17. Назовите вторичную структуру в терминаторе, которая возможно участвует в прекращении транскрипции,

ОТВЕТ. Шпилька.

18. Как называются кодоны находящиеся в терминаторе и возможно участвующие в прекращении транскрипции.

ОТВЕТ. Бессмысленные (нонсенс) кодоны.

Без медицины, НУЖНО ещё процессинг и далее но я не успел это прочитать.

18