Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
лекции по биологии / Лекция 8. Репарация, транскрипция.doc
Скачиваний:
350
Добавлен:
19.03.2016
Размер:
426.5 Кб
Скачать

5.3.2. Виды репарации.

Прежде всего, все виды репарации (или реакции) делятся на две большие группы – прямые и непрямые. Прямые реакции отличаются простотой и непосредственным действием на повреждённый объект. Никаких «предварительных работ» не проводится. Практически все они функционируют до периода синтеза ДНК. К ним относятся – фотореактивация. При непрямом типе репарации имеющееся повреждение ДНК вначале вырезается. В результате на одной из нитей формируется брешь, которая застраивается специальными ферментами в соответствии с планом расположения нуклеотидов на противоположной цепи. К этому типу репараций относятся эксцизионная репарация.

5.3.2.1. Прямой тип репарации

Фотореактивация.

Неоспоримым фактом является то, что ультрафиолетовый свет (УФ) повреждает уникальную молекулу ДНК. Повреждения в основном касаются пиримидиновых оснований – тимина и цитозина. Под влиянием УФ света происходит перераспределение валентностей в пиримидиновых основаниях, т.е. между находящимися рядом на одной нити двумя тиминами, двумя цитозинами или тимином и цитозином. Следствием этого является появление необычной химической связи между основаниями и возникновение димера (два нуклеотида) – тиминового (тимин-тимин), цитозинового (цитозин-цитозин) или тимин-цитозинового. Водородная связь между оппозитными нуклеотидами при этом разрушается (рис. 47). Есть данные о том , что пиримидиновые димеры способны активировать процессы приводящие к развитию опухолевых заболеваний.

Возникшая мутация репарируется несколькими системами репарации. Одна из них фотореактивация. Основной фермент этой реакции – белок фотолиаза имеет сложную белковую структуру. На одном участке молекулы находится светочувствительный центр воспринимающий фотоны синего света и активирующий фермент. Фермент в таком состоянии находит димеры в молекуле ДНК, разрывает образован-

ные УФ связи между тиминами и восстанавливает межнитевые водородные связи пиримидин – пурин. По завершению цикла фермент отходит от ДНК.

Сахарофосфатный остов

Нуклеиновые основания

Водородные

связи

Г Ц

УФ Т А

Т А

Г Ц

Рис. 47. Схема образования тиминовых димеров под действие УФ-облучения. Образовавшаяся химическая связь между тиминами одной нити показаны пунктирной линией.

Следует отметить, что при этом типе репарации фермент непосредственно действует на повреждение, восстанавливая его. Это классический тип прямой репарация.

5.3.2.2. Не прямой тип репарации.

а. Эксцизионная репарация.

Тминовые димеры, могут быть в силу ряда причин не восстановлены системой фотореактивации. В этом случае активируются ферменты системы эксцизионной репарации. Этот тип репарации позволяет исправить до 95% спонтанных мутаций. Существует несколько типов реакций эксцизионной репарации. Их объединяет то, что повреждённое основание, нуклеотид или неправильно спаренное основание (мисмэтч) вначале полностью вырезается из цепи, а затем вставляется новый нуклеотид (или нуклеотиды) комплементарный нуклеотиду противоположной цепочки. Приведём в качестве примераэксцизионную репарацию нуклеотидов (тиминовых димеров). Реакция состоит из нескольких этапов. На первом этапе ферментэндонуклеаза находит повреждённую нить ДНК и делает надрез в месте повреждения. Другой ферментэкзонуклеазарасширяет надрез, «откусывая» с обоих концов надреза нуклеотиды вместе с тиминовым димером. Образовавшаяся брешь застраивается с одного конца нити ДНК специальным ферментом

Надрез Расширение бреши Застройка бреши Сшивка

(Эндонуклеаза) (Экзонуклеаза) (ДНК-полимераза) (Лигаза)

Тиминовый димер

Рис. 48. Схема эксцизионной репарации тиминовых димеров.

ДНК-полимеразой. При этом вставляемые нуклеотиды комплементарны нуклеотидами не повреждённой нити ДНК. Не застроенной остаётся небольшой разрыв, который сшиваетсяДНК-лигазой.