Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
лекции по биологии / Лекция 4. Строение гена..doc
Скачиваний:
352
Добавлен:
19.03.2016
Размер:
343.04 Кб
Скачать

3.1.2. Особенности организации генов про- и эукариот. Строение оперона

Практически любой ген несёт информацию о строении какой-либо РНК. Эта информация закодирована в определённой последовательности триплетов. Однако сам ген функционировать практически не может.

Необходим целый ряд дополнительных структур, зон или участков, которые не только включают и выключают работу гена, но и меняют интенсивность его работы в зависимости от нужд организма. К таким структурам относится множество разнообразных последовательностей ДНК, которые до настоящего времени не имеют общепризнанной классификации. Мы будем придерживаться наиболее простой (но далеко не полной) классификации. По ней дополнительные структуры подразделяются на два типа – регуляторные зоны и регуляторные гены. Регуляторные зоны это участки ДНК на которых не происходит синтез РНК, но которые служат местом связывания различных белков (или РНК). Эти последовательности часто называют регуляторными зонами, ( или регуляторные области, элементы, структуры, участки и др.). На регуляторных генах транскрибируется какая-либо РНК. Эта РНК может не кодировать белок, а осаждаться на регуляторной зоне гена. Но может и нести информацию о каком-либо белеке, тогда с регуляторной зоной связывается кодируемый РНК белок.

Таким образом, в настоящее время большинство учёных приходит к мнению, что наименьшей функциональной областью в ДНК является совокупность состоящая из структурного гена, регуляторных зон и регуляторных генов.

Сам ген представляет в основном кодирующую часть ДНК. Сразу же оговоримся, что у разных генов регуляторные области различны не только по строению, величине и другим параметрам, но и отличаются по пространственному положению относительно гена (или генов), функцию которого они курируют. Понятно, что рассмотреть строение всех известных генов и их регуляторных областей со всеми индивидуальными особенностями в нашем пособии невозможно. Поэтому приведём структуру некого гипотетического гена и его регуляторных областей, обозначив у них те участки, которые наиболее часто встречаются.

Кроме того, мы рассмотрим строение не всех структурных генов, а тех, с которых транскрибируется иРНК, несущая информацию о структуре белка. Это важно помнить, т.к. строение других генов (с которых транскрибируются тРНК, рРНК или регуляторных генов несколько иное).

а. Строение оперона прокариот

Как мы отмечали раньше, для нормального функционирования гена необходимы регуляторные зоны. Регуляторных генов в этом разделе касаться не будем.

У прокариот регуляторные зоны «обслуживают» несколько генов. Эти гены вместе с регуляторными элементами носят название оперон. Таким образом, оперон состоит из двух функционально различных участков: (см. рис. 18, А).

  1. Кодирующего участка, который содержит несколько структурных генов.

  2. Регуляторной зоны , которая включает следующие участки:

а. Стартовый кодон – сайт (место) инициации транскрипции.

б. Терминатор – сайт конца транскрипции.

в. Лидирующую область.

г. Трейлерную область.

д. Промотор.

е. Оператор.

ж. Активатор

з. Спейсеры.

Все эти участки представлены на рисунке 18 (Б,В,Г).

Как отмечали выше третий элемент – регуляторные гены, которые непременно входят в состав наименьшего функционирующего участка, в этом разделе рассматриваться не будут.

Оперон

Регуляторная зона Кодирующая область (Гены)

А 5’ 3’

Регуляторная зона Ст. 1 Ст. 2 Ст. 3

Б 5’ 3’

Сайт начала транскрипции Терминатор

В 5’ 3’

Лидерная последовательность Трейлерная последовательность.

Ак. Пр. Оп. К о д и р у ю щ а я о б л а с т ь

Г 5’ 3’

Рис. 18. Схема регуляторных и кодирующих элементов оперона прокариот. На рисунке от А до Г повышается детализация строения оперона, его регуляторной и кодирующей области. Ст.1,2,3 – структурные гены. Ак. – активатор, Пр. – промотор, Оп. – оператор.

Кодирующая область (собственно ген) начинается с сайта инициации (стартовый кодон). С этого участка РНК-полимераза, проходя через структурный ген, начинает синтезировать РНК. Заканчивается кодирующая область участком, который называется терминатор (рис. 18, Б). Подходя к нему, РНК-полимераза заканчивает транскрипцию и сходит с нити ДНК. Терминирующая область у многих генов имеет различное строение. Отметим два из них.

  1. Чаще всего в терминирующей области располагается один из бессмысленных кодонов (УАА, УАГ, УГА), не кодирующий ни одну аминокислоту. Обнаружив эту последовательность РНК-полимераза прекращает синтез РНК.

  2. Сигналом к окончанию транскрипции могут быть определённые короткие последовательности ДНК (не бессмысленные кодоны), которые располагаются в зоне окончания синтеза РНК. К этим последовательностям прикрепляется белок, который и прекращает транскрипцию.

В последнее время обнаружили, что в зоне терминатора ДНК может формировать шпильки, которые и приводят к окончанию транскрипции.

Область, располагающаяся между сайтом инициации и терминации, транскрибируется как одна нить РНК и носит название единица транскрипции. У прокариот единица транскрипции, как правило, содержит последовательности, кодирующие не один, а несколько типов белков или РНК, т.е. содержит несколько структурных генов (рис. 18, Б). Все они имеют одну регуляторную область и контролируют синтез ферментов одного биохимического цикла (на рисунке они обозначены как Ст1, Ст2 Ст3).

Кроме перечисленных регуляторных зон обнаружено, что перед стартовым кодоном и терминатором располагаются небольшие участки ДНК, которые соответственно носят название лидерные и трейлерные области (или последовательности). Лидерная область включает или отключает транскрипцию иРНК, трейлерная принимает участие в «созревании» иРНК (рис. 18,В).

Особенностью лидерного участка является то, что он транскрибируется, т.е представлен в молекуле иРНК. Но этот участок в рибосомах не транслируется, т.е. он не представлен аминокислотной последовательностью в белке. Более тщательные исследования показали, что лидерная последовательность обладает уникальной способностью приобретать форму шпильки в том случае, когда транскрипция данного гена клетке не нужна. Например, при отсутствии субстрата, нет необходимости транскрибировать иРНК и транслировать с неё фермент, расщепляющий субстрат. Поэтому довольно часто отсутствие субстрата провоцирует образование в лидерной последовательности шпильки и синтез иРНК не начинается.

Трейлерная последовательность транскрибируется на иРНК и является сигналом для формированию поли(А) хвостика при «созревании» про-иРНК (см. далее).

Начиная с 5’ конца, по направлению к 3’ концу располагаются – активатор, промотор и оператор (рис. 18, Г). К промотору присоединяется РНК-полимераза. Активатор и оператор регулируют активность гена. Так к активатору присоединяется белок, способный облегчить присоединение фермента к промотору или, наоборот, затормозить этот процесс. На операторе также осаждается белок, который может блокировать работу РНК-полимеразы.

Ещё раз подчеркнём важную особенность функционирования оперона у прокариот:- одна регуляторная область оперона (куда входят активатор, промотор, оператор, стартовый кодон и др.), как правило, обслуживает несколько структурных гена. Причём, между последними располагаются последовательности ДНК не несущие никакой информации. Эти последовательности называют спейсерами (см. рис. 19).

РО Ст.1 Ст.2 Ст.3 Ст.4

С п е й с е р ы Терминатор

Рис. 19 Кодирующая область оперона, включает 4 структурных гена (Ст.1,Ст2, Ст3, Ст4), которые разделены спейсерами. Обслуживаются они одной регуляторной областью (на рисунке она обозначена как РО).

Несколько слов о правилах обозначения генов. В разделе 1 мы уже объяснили, на каком принципе основано обозначение концов ДНК, если последняя представлена на графике в виде линейного изображения.

На рисунке 18 изображена одна нить ДНК, которая маркирована цифрами 5’( начало отрезка) и 3’(конец отрезка). Эти обозначения общеприняты и облегчают понимание генетических процессов происходящих на гене (транскрипции и трансляции), которые имеют выраженную направленность. Однако в обозначении направленности гена имеются некоторые особенности, без знания которых определить начало и конец отрезка ДНК сложно. Из школьного курса известно, что транскрипция РНК происходит на двухнитчатой ДНК только с одной её нити.

Эта нить ДНК называется матричной (этот термин употребляется чаще всего), антисмысловой, незначащей, не кодирующей, кодогенной и т.д. Понятно, что синтезированная с этой нити РНК будет комплементарна ей. Однако полное совпадение последовательностей нуклеотидов у вновь синтезированной РНК будет не с нуклеотидами матричной цепи, а с противоположной (второй, оппозитной) нитью ДНК, которая называется смысловая, не матричная, значащая, кодирующая, не кодогенная и т.д.

Транскрипция с матричной цепочки ДНК идёт в направлении от 3’ конца к 5’. Понятно, что противоположная цепочка ДНК будет иметь направление 5’ – 3’. Это направление и принято обозначать на рисунках. Поэтому необходимо помнить, что на рисунках принято обозначать цифрами не ту цепочку ДНК, с которой синтезируется (транскрибируется) РНК, а противоположную – смысловую (см. рис. 20).

5’ А Т А Т Г Ц А Т Г Ц 3’ Смысловая нить

А ДНК

3’ Т А Т А Ц Г Т А Ц Г 5’ Антисмысло-

вая нить ДНК, с

которой синтези-

руется иРНК

Б РНК 5’ А Т А Т Г Ц А Т Г Ц 3’ РНК синтезирован-

ная с антисмысло-

вой нити ДНК

ВДНК 5’ А Т А Т Г Ц А Т Г Ц 3’Так на рисунках обо-

значается отрезок ,

ДНК. Последователь-

ность нуклелтидов-

в ней аналогична по-

следоватнельности

их в иРНК и антисмы

словой цепи ДНК.

Рис. 20. Схема транскрипции и правила обозначения направленности ДНК. А – отрезок молекулы ДНК, Б – синтезированная РНК на атисмысловой нити, В – цепь ДНК на рисунке обозначена так же, как и смысловая цепь ДНК

б. Строение функционирующего гена эукариот.

В общих чертах строение гена про- и эукариот в принципе одинаково. Ген эукариот так же как и у прокариот функционирует только совместно с регуляторными зонами. Но такой тандем у эукариот не называется опероном. Ген эукариот представляет собой в основном кодирующую часть ДНК, а регуляторные зоны – не кодирующую ДНК. Также как и у прокариот, рассмотрим не только строение самого гена – кодирующей его части, но и обслуживающие его элементы – регуляторные зоны.

  1. Ген (кодирующая часть) состоит из:

а. Экзонов.

б. Интронов.

  1. Регуляторные участки гена содержат:

а. Стартовый кодон – сайт (место) начала транскрипции.

б. Терминатор – сайт окончания транскрипции.

в. Лидерную последовательность.

г. Трейлерную последовательность.

д. Промотор.

е. Контролирующие зоны располагаются вблизи от обслуживаемого гена.

ж. Модуляторы (энхансеры, сайленсеры) – располагаются вдали от гена.

Некоторые исследователи объединяют контролирующую зону и модуляторы в одну область – регуляторную область.

Кодирующая часть гена эукариот имеет несколько существенных отличий от аналогичной области прокариот (рис. 22 ). Отметим два из них.

1. Как правило, кодирующая область представлена не несколькими генами, а одним. Каждый ген у эукариот имеет свою регуляторную область.

2. Если в генах прокариот не кодирующие участки практически отсутствуют, то ген эукариот имеет мозаичное строение – в нём чередуются участки, несущие информацию о последовательности аминокислот в белке и не несущие её. Участки, несущие информацию носят название экзоны, не несущие называются интроны. Число интронов у различных организмов различно.

Мозаичное строение чаше всего встречается в генах, кодирующих белки (с этих генов транскрибируется иРНК) и тРНК. Интересно, что сходные гены у разных организмов одного вида часто имеют одинаковое число интронов в одних и тех же позициях. Обычно длина интронов превышает длину экзонов.

Кодирующая часть гена представляет единицу транскрипции.

Что касается регуляции, то необходимо пояснить, что существуют два термина – регуляторные области (зоны, участки и т.д.) и регуляторные гены (гены-регуляторы).

Регуляторные области – это участки ДНК на которых осаждаются белки-регуляторы. Их функция – регуляция транскрипции. Для простоты эти зоны подразделяют на два типа. Мы их отметили выше, но всё же повторим.

а. Зоны располагающиеся близко от гена, который они контролируют - контролирующие зоны.

б. Зоны располагающиеся далеко от контролируемого гена - модуляторы.

Гены-регуляторы – это обычные структурные гены, кодирующие иРНК несущую информацию о строении какого-либо белка-регулятора. Некоторые из этих генов транскрибируют специальные регуляторные РНК.

Рассмотрим строение регуляторных областей. Их несколько. На 5’- конце гена располагается сайт начала транскрипции. На 3’- конце располагается сайт окончания транскрипции (терминатор). Перед сайтом начала транскрипции, также как и у прокариот, располагается лидерная последовательность, а перед сайтом окончания транскрипции находится трейлерная последовательность. Функциональное значение этих участков аналогично таким же участкам у прокариот (см. выше). Если у прокариот транскрипцию всех генов осуществляла один фермент РНК- полимераза, то у эукариот существуют три типа РНК-полимераз, которые обеспечивают транскрипцию разных эукариотических генов (генов транскрибирующих иРНК, тРНК и рРНК). У большинства генов эукариот, как и у прокариот, эти ферменты связываются с участком,

э и э и э и э

5’ 3’

Трейлерная последовательность

Лидерная последовательность

Сайт конца транскрипции

Сайт начала транскрипции

Рис. 21. Схема кодирующей области гена эукариот (э – экзоны, и – интроны) .

расположенным на 5’- конце ДНК перед сайтом инициации. Этот участок носит название промотор. Однако, в отличии от прокариот одна РНК-полимераза соединиться с промотором не способна. Прежде чем связаться с промотором РНК-полимераза эукариот соединяется с многочисленными белками (их около 50), которые способствуют её прикреплению к промотору. Эти белки называются факторами транскрипции, а образовавшийся комплекс РНК-полимеразы с факторами транскрипции именуется комплекс транскрипции (или транскрипционный комплекс). Факторы транскрипции (их так же можно назвать регуляторными белками) активируют РНК-полимеразу и кодируются регуляторными генами.

Образование комплекса транскрипции и его активность в свою очередь контролируют ещё два типа белков-регуляторов. Первый тип белков осаждается на регуляторные (зоны) последовательности ДНК, которые располагаются, как правило, рядом с промотором. Эти белки ускоряют или тормозят образование транскрипционного комплекса. Регуляторные последовательности имеют различные названия. Чаще всего их объединяют термином – контролирующие зоны или цис-регуляторные элементы. К этой зоне относится лидерная последовательность, промотор и регуляторные зоны. располагающиеся рядом с промотором - рядом расположенные области (рис. 24). К контролирующим зонам присоединяются различные регуляторные белки, которые влияют на начальное связывание РНК-полимеразы с промотором. Эти белки носят специальное название – факторы транскрипции.

Второй тип регуляторных последовательностей усиливает или тормозит движение транскрипционного комплекса по гену. У эукариот эти участки часто расположены далеко от контролируемого ими гена: - впереди от 5’- конца кодирующей области, но за несколько тысяч пар нуклеотидов от кодирующего участка, в самой кодирующей области или позади неё. В некоторых случаях их выявляют на других хромосомах (рис.23 А,Б,В,Г).

Рядом располагающиеся контролирующие зоны

Лидирующая область

Промотор Кодирующая область

Модуляторы Сайт инициации

Контролирующие области

Рис. 22. Схема возможного расположения кодирующей части гена и промотора.

Как правило, на этих областях, также как и на контролирующих зонах, осаждаются регуляторные белки усиливающие или замедляющие транскрипцию. Эти регуляторные последовательности настолько разнообразны по строению, положению и функциям, что для большинства из них пока не найдено название. В последнее время некоторые учёные называют их модуляторы или транс-регуляторные элементы ( респонсивные элементы) (рис. 22).

К модуляторам относят энхансеры (усиливают транскрипцию с некоторых эукариотических промоторов) и сайленсеры (обладают противоположным действием по отношению к энхансерам), оказывающие дистанционное влияние на инициацию транскрипции независимо от своей ориентации относительно кодирующей области.

Предполагается, что их регулирующий эффект связан со сближением модуляторов с транскрипционным комплексом в результате изгиба молекулы ДНК.

Резюмируя изложенный материал, по регуляторным элементам, подчеркнём, что большинство исследователей отмечают три типа белков-регуляторов, принимающих участие в регуляции транскрипции гена:

Р Кодирующая область

А

Р К

Б

К Р К.

В

К Р

Г

Р К

Д

Рис. 23. Схема возможного расположения кодирующих (К) и регуляторных (Р) областей в генах эукариот. А – регуляторная зона располагается впереди кодирующей области, Б между регуляторной и кодирующей областью располагается нуклеотидные последовательности не связанные с деятельностью гена, В – регуляторные области располагаются внутри кодирующей, Г – регуляторные области располагаются за кодирующей областью, Д – регуляторные и кодирующие области располагаются га разных хромосомах.

  1. Белки, соединяющиеся с РНК-полимеразой.

  2. Белки, соединяющиеся с ДНК контролирующей зоны.

  3. Белки, соединяющиеся с ДНК модуляторов (рис. 24 ).

МЗ. Ген это – совокупность сегментов ДНК, контролирующего образование либо молекулы РНК, либо белкового продукта. Гены бывают структурные и регуляторные. К структурным генам относятся гены транскрибирующие иРНК, рРНК и тРНК. К регуляторным относятся гены, участвующие в регуляции экспрессии генов. Оперон прокариот состоит из структурных генов (одного или нескольких) и регуляторной области. Последняя, в свою очередь, состоит из активатора, промотора, оператора и терминатора. Активатор активирует присоединение РНК-полимеразы к промотору, на оператор осаждается белок регулятор, блокируя движение РНК-полимеразы через оператор. Терминатор – область, где заканчивается транскрипция РНК. Состоит из бессмысленных кодонов. В отличие от прокариот каждый ген эукариот имеет отдельную регуляторную область. Кодирующая область эукариот состоит из экзонов (информативные участки) и интронов (неинформативные участки). Регуляторная область у эукариот устроена значительно сложнее. Есть область (промотор), где осаждается сложный транскрипционный комплекс, куда входит РНК-полимераза. Формирование этого комплекса контролируется специальными участками расположенными вблизи гена – контролирующие области.

Факторы транскрипции

РНК-полимераза

ДНК , промотор

Белки-регуляторы

Промотор

Контролирующая зона

Энхансер

Сайленсер

Белки-регуляторы

Рис. 24. Распределение регулирующих зон относительно друг друга

Другие регуляторные зоны могут находиться рядом с геном или вдали от него и называются модуляторы. Они регулируют движение РНК-полимеразы по гену.