Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
милый модуль / биология вопросы.docx
Скачиваний:
310
Добавлен:
19.03.2016
Размер:
55.09 Кб
Скачать

15. Принцип кодирования и реализации генетической информации в клетке, свойства генетического кода их биологический смысл.

Генетич код- система записи в молекулах ДНК генетич информ о строении белковой молекулы. Белок состоит из аминокис-т, кот всего 20. АК в белк молекуле расположены в линейном порядке,подобно нуклеотидам в молекуле ДНК. Последовательность АК в белке опр-ся последов-тью нуклеотидов в молекуле ДНК,его ген кодом. Свойства кода 1) Триплетность – Каждая аминокислота кодируется тремя нуклеотидами. Триплет нуклеотидов наз-ся кодоном. 2)Неперекрываемость – триплеты следуют один за другом. Каждый нуклеотид в ходит в состав только одного кодона. Триплеты не накладываются друг на друга. 2) Однонаправленность - Считывания генитической информации происходит по 3 нуклеотидам в одном направление, без каких либо вставок между нуклеотидами. 4) Выражденность(изыточность) – 1 наличие избыточных триплетов, необходимых для кодирования аминокислот. 2 Наличие «Нонсенс» кодонов УАА УАГ УГА-кодоны терминации, АУГ и ГУГ кодоны инициации. 5) Универсальность – у всех живых организмов одни и теже аминокислоты кодируются одинаковыми триплетами. 6) специфичность. Нет случаев когда один и тот де кодон соответствовал бы неск АК.

16. Биосинтез белка — сложный многостадийный процесс синтеза полипептидной цепи из аминокислот, происходящий на рибосомах с участием молекул мРНК и тРНК. Процесс биосинтеза белка требует значительных затрат энергии.

Синтез белка включает несколько этапов:

1. Претранскрипционный. Это стартовый этап синтеза , во время которого происходит активация молекулы ДНК с помощью специальных белков.

2. Транскрипционный-синтез и-РНК происходит в ядре, в процессе которого информация, содержащаяся в гене ДНК, переписывается на и-РНК с последовательностью нуклеотидов комплементарной молекуле ДНК.

3.Транспортный охватывает период между транскрипцией и трансляцией. Над анном этапе происходит процессинг, т.е. созревание И-РНК. Суть его-удаление интронов (неинформ участки). Экзаоны (триплеты,несущие информ об АК) сохр и соед-ся в единую цепь с помощью ферментов лигаз. Указанное явление наз-ся сплайсинг. Прошедшая сплайсинг и-РНК переносится из ядра в цитоплазму с помощью белков-переносчиков.

4. Трансляцией наз-ся синтез полипептидной цепи из АК согласно кодирующей и-РНК. В ходе трансл происх перевод генетич информ в аминокислотную последовательность: ДНК, и-РНК, белок. Здесь выд-ся следующие этапы: инициация, элонгация, терминация.

инициация — узнавание рибосомой стартового кодона и начало синтеза.

элонгация — собственно синтез белка.

терминация — узнавание терминирующего кодона (стоп-кодона) и отделение продукта.

Посттрансляция. Происходит образование вторич ной и третичной структуры белка, то есть формирование окончательной структуры белка.

Таким образом, в процессе биосинтеза белка образуются новые молекулы белка в соответствии с точной информацией, заложенной в ДНК. Этот процесс обеспечивает обновление белков, процессы обмена веществ, рост и развитие клеток, то есть все процессы жизнедеятельности клетки.

17.Трансляцией наз-ся синтез полипептидной цепи из АК согласно кодирующей и-РНК. В ходе трансл происх перевод генетич информ в аминокислотную последовательность: ДНК, и-РНК, белок. Трансляйия я вляется очень важной частью общего метаболизма клетки.В ней задействованы не менее 20 ферментов( аминоацилсинтетаз), до 60 различных т-РНК, 3-5 молекул р-РНК и макромолекулы и-РНК. Здесь выд-ся следующие этапы: инициация, элонгация, терминация.

Инициация- начало трансляции. Происходит образование цельной ри-босомы, присоединение мРНК и установление первой аминокислоты. В процессе трансляции рибосомы находятся в “собранном” состоянии. В цельной рибосоме выделяют участок присоединения тРНК, “нагруженной” аминокислотой (то есть аминоацил-тРНК) — акцепторный (А-сайт) и участок удержания тРНК с растущей полипептидной цепью — пеп-тидильный (Р-сайт) (в молекулярной биологии выражение “участок цепи” часто заменяют термином “сайт”). Во время инициации (при участии трех вспомогательных белковых факторов) происходит связывание мРНК с малой субъединицей рибосомы, затем к первому кодону своим антикодоном присоединяется “груженая” (несущая аминокислоту) тРНК, а после этого к образовавшемуся комплексу присоединяется большая субъединица рибосомы.

2. Элонгация. Ко второму кодону (в А-сайт рибосомы) присоединяется еще одна аминоацил-тРНК. Между карбоксильной группой (-СООН) первой аминокислоты и аминогруппой (-NH,) второй образуется пеп-тидная связь. После этого первая аминокислота отсоединяется от своей тРНК и “повисает” на соединенной с ней аминокислоте второй тРНК. Пустая первая тРНК освобождается из комплекса с рибосо-мой, и Р-сайт становится незанятым. Рибосома “делает шаг” вдоль мРНК. При этом тРНК с аминокислотами перемещается из А-сайта в Р-сайт. “Шаг” рибосомы всегда строго определен и равен трем нук-леотидам (кодону). Движение рибосомы вдоль мРНК называется транслокацией. Как репликация и транскрипция, транслокация всегда осуществляется в 5' — 3' направлении мРНК.

3. Терминация. Синтез полипептидной цепи идет до тех пор, пока рибосома не достигнет одного из трех стоп-кодонов. В этот момент белковая цепь отделяется, а рибосома диссоциирует на субъединицы. Практически все белки по окончании своего синтеза подвергаются созреванию или процессингу — реакциям посттрансляционных модификаций. После этого они (в основном по “трубопроводу” эндоплазматической сети) транспортируются к месту своего назначения.

Посттрансляция. Происходит образование вторич ной и третичной структуры белка, то есть формирование окончательной структуры белка.

18. Для каждого организма характерен свой собственный набор белков, выполняющих необходимые функции и обеспечивающих формирование всех признаков организма. Синтез белка или реализация генетической информации происходит в каждой живой клетке в соответствии с ее генетической программой, записанной с помощью генетического кода в молекулах нуклеиновых кислот. Синтез белка представляет собой сложный, многоступенчатый процесс образования белковой молекулы (полимера) из аминокислот (мономеров), который невозможен без участия нуклеиновых кислот, большого количества ферментов, энергии (АТФ), рибосом, аминокислот и ионов Mg2+. Ген имеет прерывистую структуру. Кодирующие участки – экзоны и некодирующие – интроны. Ген у эукариоических организмов имеет экзонно-интронную структуру. Длина интрона больше длины экзона. В процессе процессинга интроны «вырезаются» - сплайсинг. После образования зрелой и-РНК после взаимодействия с особым белком переходит в систему – информосому, которая несет информацию в цитоплазму. Сейчас экзоно-интронные системы хорошо изучены (например, онкоген - Р-53). Иногда интроны одного гена являются экзонами другого, тогда сплайсинг невозможен.

Процесинг. Молекулярные механизмы, связанные с "созреванием" разных типов РНК, называются процесингом. Они осуществляются в ядре перед выходом РНК из ядра в цитоплазму.

В процессе "созревания" иРНК специальные ферменты вырезают интроны и сшивают активные участки, которые остались (экзоны). Этот процесс называется сплайсингом. Поэтому последовательность нуклеотидов в созревшей ИРНК не является целиком комплементарной нуклеотидам ДНК. В ИРНК рядом могут стоять такие нуклеотиди, комплементарные которым нуклеотиди в ДНК находятся один от другого на значительном расстоянии.

Сплайсинг - очень точный процесс. Его нарушения изменяет рамку считывания при трансляции, которая приводит к синтезу другого пептида. Точность вырезания интронов обеспечивается распознаванием ферментов определенных сигнальных последовательностей нуклеотидов в молекуле про-иРНК.

19. В каждый момент в клетке работает 20% генов, а не все. В первые механизм включения и выключения генов изучили на бактерии кишечной палочке Жакоб и Моно. В 1966г они сформулировали гипотезу автоматической регуляции синтеза белков по пронципу обратной связи. В эксперименте они доказал, что в прокариотической клетке происходит автоматическая регуляция работы генов и синтеза белков. Схема Жакоба – Моно. Согласно их гипотезы считывание информации со структурных генов происходит блоками, т.е единицей транскрипции явл блок оперон. В его состав входят несколько структурных генов , который участвует в первом каскаде реакций. В их главе стоит участок ДНК оператор, отделяющий от структурных генов промотор, к кот прикрепляется в процессе транскрипции полимеразы. В клетке еще есть регуляторные гены, находятся вне оперона, которые контролирует синтез белка-репрессора. У него роль включения и выключения генов, связываясь с оператором оперона. Свободный белок-репрессор блокирует оператор, препяствую прохождения полимеразы к структурным генам. Репрессию с оператора снимает индуктор, которым служит метаболит, поступивший в клетку (не любой, а тот, для расщепления которого нужны ферменты, закодированные данным опероном). Метаболит притягивает на себя белок-репрессор, образуя с ним не активный комплекс. В результате снимается блокада с оператора и открывается путь для полимеразы.

Георгиев 1972г. – регуляции транскрипции у эукариот. Единица

транскрипции - транскриптон, состоящий из неинформативной (акцепторной)

и информативной (структурной) зон.

Неинформативная зона: промотор, инициатор, гены-операторы.

Информативная зона: структурный ген, имеющий мозаичную экзон-

интронную структуру. Экзоны – последовательности ДНК, содержащие информацию о структуре полипептида, и интроны – вставки из неинформативных участков ДНК. Заканчивается транскриптон терминатором.

Регуляция транскрипции у эукариот принципиально такая же, как и у

прокариот, но является комбинационной и отличается большей сложностью.

20. Генная, или генетическая инженерия (genetic engineering, genetic modification technology) – это совокупность биотехнологических методов, позволяющих создавать синтетические системы на молекулярно-биологическом уровне

Генная инженерия дает возможность конструировать функционально активные структуры в форме рекомбинантных нуклеиновых кислот: рекДНК (recDNA) или рекРНК (recRNA) – вне биологических систем (in vitro), а затем вводить их в клетки.

Возможность прямой (горизонтальной) передачи генетической информации от одного биологического вида другому была доказана в опытах Ф. Гриффита с пневмококками (1928).

Однако генная инженерия как технология рекДНК возникла в 1972 г., когда в лаборатории П. Берга (Станфордский ун-т, США) была получена первая рекомбинантная (гибридная) ДНК (рекДНК), в которой были соединены фрагменты ДНК фага лямбда и кишечной палочки с кольцевой ДНК обезьяньего вируса SV40.

С начала 1980-х гг. достижения генной инженерии начинают использоваться на практике.

С 1996 г. генетически модифицированные растения (genetic modified plants) начинают использоваться в сельском хозяйстве.

Задачи генной инженерии

Основные направления генетической модификации организмов:

придание устойчивости к ядохимикатам (например, к определенным гербицидам);

придание устойчивости к вредителям и болезням (например, Bt-модификация);

повышение продуктивности (например, быстрый рост трансгенного лосося);

придание особых качеств (например, изменение химического состава).

Биотехноло́гия — дисциплина, изучающая возможности использования живых организмов, их систем или продуктов их жизнедеятельности для решения технологических задач, а также возможности создания живых организмов с необходимыми свойствами методом генной инженерии.

Биотехнологией часто называют применение генной инженерии в XX—XXI веках, но термин относится и к более широкому комплексу процессов модификации биологических организмов для обеспечения потребностей человека, начиная с модификации растений и одомашненных животных путем искусственного отбора и гибридизации. С помощью современных методов традиционные биотехнологические производства получили возможность улучшить качество пищевых продуктов и увеличить продуктивность живых организмов.

21. Время существования клетки от ее образования до следующего деления или смерти называют жизненным циклом клетки (ЖЦК). В ЖЦК эукариотических клеток многоклеточного организма можно выделить несколько периодов (фаз), каждый из которых характеризуется определенными морфологическими и функциональными особенностями:

- фаза размножения и роста

- фаза дифференцировки

- фаза нормальной активности

- фаза старения и смерти клетки.

В жизненном цикле клетки можно также выделить митотический цикл, включающий подготовку клетки к делению и само деление.

Клеточный цикл- совокупность процессов включающих период подготовления клетки к делению и само деление. Состоит из двух стадий – стадия покоя (интерфаза) и стадия деления (митоз)

Интерфаза предшествует митозу и в ней осуществляется синтез ДНК. Подготовление клетки к делению состоит из 3 периудов 1)Пресинтетический 2)Синтетический 3)Постсинтетический

Соседние файлы в папке милый модуль