Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
милый модуль / биология вопросы.docx
Скачиваний:
307
Добавлен:
19.03.2016
Размер:
55.09 Кб
Скачать

9. Хромосомный уровень организации наследственного материала характеризуется особенностями морфологии и функций хромосом. Роль хромосом в передаче наследственной информации была доказана благодаря:

1) Открытию хромосомного определения пола,

2) Установлению групп сцепления генов, соответствующих числу хромосом,

3) Построению генетических и цитологических карт хромосом.

Геном - совокупность всех генов гаплоидного набора хромосом данного вида организма. Геномный уровень организации наследственного материала имеет особенности у прокариот и эукариот.

Геном эукариот:

большое число генов,

большее количество ДНК,

в хромосомах имеется очень сложная система контроля активности генов во времени и пространстве, связанная с дифференциацией клеток и тканей в онтогенезе организма.

Количество ДНК в хромосомах велико и возрастает по мере усложнения организмов. Для эукариот также характерна избыточность генов. Так, у человека геном содержит число нуклеотидных пар, достаточное для образования более 2 млн. структурных генов, в то время как у человека имеется по данным 2000 года 31 тыс. всех генов.

Больше половины гаплоидного набора генома эукариотов составляют уникальные гены, представленные лишь по одному разу. У человека таких уникальных генов — 64%, у теленка — 55%, у дрозофилы — 70%.

В течение последних 10 лет сформировалось представление, что в состав генома про- и эукариот входят гены:

1) Имеющие либо стабильную, либо нестабильную локализацию;

2) уникальная последовательность нуклеотидов представлена в геноме единичными или малым числом копий: к ним относятся структурные и регуляторные гены; уникальные последовательности эукариот, в отличии от генов прокариот, имеют мозаичное строение;

3) многократно повторяющиеся последовательности нуклеотидов являются копиями (повторениями) уникальных последовательностей (у прокариот нет). Копии группируются по несколько десятков или сотен и образуют блоки, локализующиеся в определенном месте хромосомы. Повторы реплицируются, но, как правило, не транскрибируются. Они могут играть роль:

1) регуляторов генной активности;

2) защитного механизма от точковых мутаций;

3) хранение и передача наследственной информации;

4) механизм эволюции.

10. Хромосомы- высокоспециализированные компоненты Кл ядра, обладающее особой индивидуальностью и ф-цией, способные к воспроизведению на протяжении ряда поколений. Свою четко выраженную морфологическую структуру хромосомы приобретают в ходу кл деления (митоза). Хим.состав. В состав хромосомы входит ДНК, и-РНК, основные белки гистоны, негистоновые белки. Гистоны- это структ белки отн-но небольшого диаметра, несущие положительно заряженные АК. Полож. Заряд способствует тесной связи гистонов с ДНК. Хромосома может быть одинарной (из одной хроматиды) и двойной (из двух хроматид). Хроматида – это нуклеопротеидная нить, половинка двойной хромосомы.

Хромосомы под световой микроскоп изучают в метафазе. 2 молекулы ДНК, каждая уложена в хроматиду. Они соединены между собой центромерой(первич перетяжкой).К центромере присоединяются нити веретена деления. Она делит хромосому на короткое и нижнее плечо. К короткому у некоторых хромосом присоединены спутники. Между плечом и спутником вторичная перетяжка. Вторичная перетяжка – ядрышковый организатор, содержит гены рРНК, имеется у одной – двух хромосом в геноме. Теломеры- концевые участки хромосом, обеспечивая индивидуальность хромосом и препятствуют слипанию хромосом. Изменение в кольцевую структуру или мутация типа слипания- в результате потери теломер. По расположению центромеры хромосомы делят на метацентрическую (плечи равные), субметацентрические(центром книзу), акроцентрические( центромера почти на теломере). Отношение плеча к абсолютной длине хромосомы- центромерный индекс)

Длина ДНК в хромосоме может достигать нескольких сантиметров. В метафазе хромосомы, состоящие из двух сильно спирализованных хроматид, хорошо заметны, но гены в них остаются неактивными на протяжении всего митоза. После окончания митоза происходит деспирализация хромосом. В интерфазном ядре хромосома состоит из сильно растянутой хроматиды. Из-за небольшой толщины (25 мк) они не видны в оптический микроскоп, но хорошо видны в электронном микроскопе и не теряют своей индивидуальности на протяжении всего жизненного цикла клетки.

Соседние файлы в папке милый модуль