
- •Вопрос1 Кинематическое описание движения материальной точки
- •Вопрос2 Криволинейное движение
- •Вопрос3 Кинематика вращательного движения
- •Вопрос 4 Законы динамики Ньютона
- •Вопрос 5 Закон сохранения импульса
- •Вопрос 6 Работа, мощность.
- •Вопрос 7 Энергия
- •Вопрос 8 Момент инерции твердого тела
- •Вопрос 9 Работа и кинетическая энергия вращения
- •Вопрос 10 Основной закон динамики вращения
- •Вопрос 11 Закон сохранения момента импульса
- •Вопрос 12 Механические колебания
- •Вопрос 13 Идеальный газ
- •Вопрос 14 Распределение молекул идеального газа по скоростям хаотического теплового движения.
- •Вопрос 15 Распределение молекул в потенциальном поле сил
- •Вопрос 16 Первое начало термодинамики
- •Вопрос 17 Теплоемкость
- •Вопрос 18 Применение первого закона термодинамики к изопроцессам
- •Вопрос 19 Адиабатический процесс
- •2.3.6. Адиабатический процесс. Политропный процесс
- •Вопрос 20 Второе начало термодинамики
- •2.3.8. Энтропия, её статистическое толкование и связь с термодинамической вероятностью
- •2.3.9. Второе начало термодинамики
- •Вопрос 21 Цикл Карно для идеальной тепловой машины Тепловые двигатели и холодильные машины. Цикл Карно и его к. П. Д. Для идеального газа
- •Вопрос 22 Свойства физических зарядов
- •Вопрос 23 Напряженность электрического поля в вакууме
- •Вопрос 24 Теорема Остроградского-Гаусса для электрического поля в вакууме
- •2. Поле двух бесконечных параллельных равномерно заряженных плоскостей
- •Вопрос 25 Потенциал
- •Вопрос 26 Связь напряженности электрического поля с потенциалом
- •Вопрос 27 Проводники в электрическом поле
- •Вопрос 28 Диэлектрики в электрическом поле
- •Вопрос 29 Энергия электростатического поля
- •Вопрос 30 Постоянный электрический ток
- •Вопрос 31 Закон Ома для однородного участка цепи
- •Вопрос 32 Закон Ома для замкнутой цепи
- •Вопрос 33 Работа и мощность электрического тока
- •Вопрос 34 Магнитное поле в вакууме
- •Вопрос 35 Движение заряженных частиц в магнитном поле
- •Вопрос 36 Взаимодействие магнитного поля с током
- •Вопрос 38 Поток вектора магнитной индукции сквозь произвольную поверхность
- •Вопрос 39 Работа по перемещению проводника и контура с током в магнитном поле.
- •Вопрос 40 Электромагнитная индукция
- •Вопрос 41 Явление самоиндукции
- •Вопрос 42 Энергия магнитного поля тока
- •Вопрос 43 Закон полного тока
- •Вопрос 44 Магнитные свойства вещества
- •Вопрос 45 Магнетики в магнитном поле
- •Вопрос 46 Ферромагнетизм
- •Природа ферромагнетизма
- •Вопрос 50 Интерференция света от двух источников
- •Вопрос 51 Интерференция света в тонких пленках
- •Вопрос 52 Дифракция света
- •Вопрос 53 Дифракция при параллельных лучах Фраунгорфера
- •Вопрос 54 Поляризация света
- •Вопрос 55 Способы получения поляризованного света
- •Вопрос 56 Тепловое излучение
- •Вопрос 57 Законы теплового излучения
- •Вопрос 58 Внешний фотоэффект
- •Вопрос 59 Эффект Комптона
- •Вопрос 60 Корпускулярно – волновой дуализм
- •Вопрос 61 Волновые свойства микрочастиц
- •. (6.38)
- •Вопрос 62 Соотношение неопределенностей
- •Вопрос 63 Волновая функция.
- •Вопрос 64 Боровская теория водородоподобного атома
- •Вопрос 66 Молекула
- •Вопрос 67 Современные представления об электропроводности тел
- •Вопрос 68 Атомное ядро
Вопрос 44 Магнитные свойства вещества
рm=IS=eνS - орбитальный момент |
|
где I= eν — сила тока, ν — частота вращения электрона по орбите, S—площадь орбиты.
Le=mvr=2mS - механический момент |
|
где v=2r, r2=S.
|
(4.50) |
называется гиромагнитным отношением орбитальных моментов. Это отношение справедливо для любой круговой (хотя для разных орбит значения v и r различны) и эллиптической орбиты.
теорема Лармора:
единственным результатом влияния
магнитного поля на орбиту электрона в
атоме является прецессия орбиты и
вектора Рm
с угловой скоростью
вокруг
оси, проходящей через ядро атома и
параллельной вектору В индукции
магнитного поля.
Вследствие прецессии Лармора появляется дополнительный орбитальный ток
ΔIорб
= е
|
Вопрос 45 Магнетики в магнитном поле
Наведенные составляющие магнитных полей атомов складываются и образуют собственное магнитное поле вещества, ослабляющее внешнее магнитное поле.
Этот эффект называется диамагнитным, а вещества, намагничивающиеся во внешнем магнитном поле против направления поля, называются диамагнетиками.
К парамагнитным относятся вещества, намагничивающиеся во внешнем магнитном поле по направлению поля.
Диэлектрик
поляризуется в направлении вектора
напряженности Е электрического поля.
Для количественного описания намагничения
магнетиков вводят векторную величину
— намагниченность, определяемую
магнитным моментом единицы объема
магнетика:
,
где
—
магнитный момент магнетика, представляющий
собой векторную сумму магнитных моментов
отдельных атомов.
|
(4.65) |
Как показывает опыт, в несильных полях намагниченность прямо пропорциональна напряженности поля, вызывающего намагничение, т. е.
J=H |
(4.66) |
где — безразмерная величина, называемая магнитной восприимчивостью вещества. Для диамагнетиков поле электронных токов противоположно внешнему (, отрицательна), для парамагнетиков поле электронных токов совпадает с внешним (, положительна).
Используя формулу (4.66), выражение (4.64) можно записать в виде
В=0(1+)Н |
(4.67) |
Откуда
|
Безразмерная величина =1+ называется магнитной проницаемостью вещества. Магнитное поле электронных токов значительно слабее намагничивающего поля: для диамагнетиков <0 (порядка 10-4—10-6) и <1, для парамагнетиков >0 и >1.
Закон полного тока для магнитного поля в веществе (теорема о циркуляции вектора В) является обобщением закона (4.9):
|
(4.69) |
Циркуляция вектора магнитной индукции В по произвольному замкнутому контуру равна алгебраической сумме токов проводимости и электронных токов, охватываемых произвольным замкнутым контуром, умноженной на магнитную постоянную. Вектор В характеризует результирующее поле, созданное макроскопическими токами в проводниках и микроскопическими токами в магнетиках, поэтому линии вектора магнитной индукции В не имеют источников и являются замкнутыми.
Вопрос 46 Ферромагнетизм
Ферромагнетики — сильномагнитные вещества, обладающие спонтанной намагниченностью даже при отсутствии внешнего магнитного поля. Ферромагнитными свойствами обладают — железо, кобальт, никель, гадолиний, их сплавы и соединения.
Для ферромагнетиков
зависимость J
от Н является нелинейной. По мере
увеличения намагничивающего поля
возрастает степень ориентации молекулярных
магнитных моментов по полю и намагниченность
быстро растет. Процесс замедляется с
уменьшением доли неориентированных
моментов, когда все моменты будут
ориентированы по полю, дальнейшее
увеличение J прекращается и наступает
магнитное насыщение.
Магнитная индукция B=0(H+J) в слабых полях растет быстро с ростом Н вследствие увеличения J. Изменение магнитной индукции В в сильных полях происходит по линейному закону, поскольку J=Jнас. Особенностью ферромагнетиков являются большие значения (например, для железа — 5000, для сплава супермаллоя — 800000!) и зависимость от Н (рис. 4.34). Вначале растет с увеличением Н, достигает максимума и начинает уменьшаться, приближаясь в случае сильных полей к 1 (=B/(0H)=1+J/H, поэтому при J=Jнас=const с ростом Н отношение J/H0, a l).
Важнейшее практическое значение имеет зависимость магнитных свойств предыстории намагничения. Это явление получило название магнитного гистерезиса. Если намагнитить ферромагнетик до насыщения (точка 1, рис. 4.34), а затем начать уменьшать напряженность Н намагничивающего поля, то, как показывает опыт, уменьшение J описывается кривой 1—2, лежащей выше кривой 1—0. При H=0 J отличается от нуля, т. е. в ферромагнетике наблюдается остаточное намагничение Joc. Остаточное намагничение используют в постоянных магнитах. Намагничение обращается в нуль под действием поля НC, имеющего направление, противоположное полю, вызвавшему намагничение. Напряженность НC называется коэрцитивной силой.
При дальнейшем увеличении противоположного поля ферромагнетик перемагничивается (кривая 3—4), и при Н=-Hнас достигается насыщение (точка 4). Затем ферромагнетик можно опять размагнитить (кривая 4—5—6) и вновь перемагнитить до насыщения (кривая 6—1).
Таким образом, при действии на ферромагнетик переменного магнитного поля намагниченность J изменяется в соответствии с кривой 1—2—3—4—5—6—1, которая называется петлей гистерезиса (от греч. «запаздывание»). Гистерезис приводит к тому, что намагничение ферромагнетика не является однозначной функцией Н, т. е. одному и тому же значению Н соответствует несколько значений J.
Различные ферромагнетики дают разные гистерезисные петли. Ферромагнетики с малой (в пределах от нескольких тысячных до 1—2 А/см) коэрцитивной силой НC (с узкой петлей гистерезиса) называются мягкими, с большой (от нескольких десятков до нескольких тысяч ампер на сантиметр) коэрцитивной силой (с широкой петлей гистерезиса) — жесткими. Величины НC, Joc и max определяют применимость ферромагнетиков для тех или иных практических целей. Так, жесткие ферромагнетики (например, углеродистые и вольфрамовые стали) применяются для изготовления постоянных магнитов, а мягкие (например, мягкое железо, сплав железа с никелем) — для изготовления сердечников трансформаторов.
Ферромагнетики обладают еще одной существенной особенностью: для каждого ферромагнетика имеется определенная температура, называемая точкой Кюри, при которой он теряет свои магнитные свойства. При нагревании образца выше точки Кюри ферромагнетик превращается в обычный парамагнетик. Переход вещества из ферромагнитного состояния в парамагнитное, происходящий в точке Кюри, не сопровождается поглощением или выделением теплоты, т. е. в точке Кюри происходит фазовый переход II рода.
Наконец, процесс намагничения ферромагнетиков сопровождается изменением его линейных размеров и объема. Это явление получило название магнитострикции. Величина и знак эффекта зависят от напряженности Н намагничивающего поля, от природы ферромагнетика и ориентации кристаллографических осей по отношению к полю.