
- •35. Самостоятельный газовый разряд, его типы и применение.
- •36. Плазма, ее свойства и применение.
- •37. Магнитное поле. Опыты Эрстеда. Магнитный момент витка с током.
- •38. Вектор магнитной индукции. Его связь с магнитной напряженностью.
- •39. Графическое изображение магнитного поля. Отличие линий магнитного поля от линий электростатического поля.
- •40. Закон Био-Савара-Лапласа. Магнитное поле прямого тока.
- •41. Закон Био-Савара-Лапласа. Магнитное поле в центре кругового проводника с током.
- •42. Взаимодействие проводников с током. Закон Ампера.
- •43. Магнитное поле движущегося заряда.
- •44. Действие магнитного поля на движущийся заряд. Сила Лоренца.
- •45. Движение заряженных частиц в магнитном поле. Ускорители элементарных частиц.
- •46. Эффект Холла.
- •47. Циркуляция вектора магнитной индукции. Ее сравнение с циркуляцией напряженности электростатического поля.
- •48. Магнитный поток. Теорема Гаусса для магнитного поля.
- •49. Работа по перемещению проводника и контура с током в магнитном поле.
- •50. Явление электромагнитной индукции. Закон Фарадея. Правило Ленца.
- •51. Вывод закона Фарадея из закона сохранения энергии.
- •52. Индуктивность контура. Самоиндукция. Э.Д.С. Самоиндукции.
- •53. Явление взаимной индукции. Принцип работы магнитного поля.
- •54. Энергия магнитного поля. Плотность энергии магнитного поля.
- •55. Магнетики. Молекулярные токи. Магнитные моменты атомов.
- •56. Диа- и парамагнетики. Их намагниченность.
- •57. Природа ферромагнетизма. Свойства ферромагнетиков.
- •58. Напряженность магнитного поля. Магнитная проницаемость вещества.
- •60. Вихревое электрическое поле.
- •61. Ток смещения.
- •62. Уравнения Максвелла для электромагнитного поля.
- •66. Дифференциальное уравнение электромагнитной волны. Плоские электромагнитные волны.
- •67. Энергия и импульс электромагнитных волн. Вектор Умова-Пойнтинга.
- •68. Излучение диполя. Применение электромагнитных волн.
- •1. Электрический заряд. Опыты Милликена. Закон сохранения заряда.
- •2. Закон Кулона.
- •3. Электростатическое поле. Напряженность электростатического поля. Принцип суперпозиции.
- •4. Графическое изображение электростатического поля. Поток вектора напряженности.
- •5. Электрический диполь. Поле диполя.
- •10. Потенциал электростатического поля.
- •11. Связь потенциала с напряженностью электростатического поля.
- •12. Типы диэлектриков. Поляризация диэлектриков. Виды поляризации.
- •14. Электрическое смещение. Теорема Гаусса для электростатического поля в диэлектрике.
- •16. Проводники в электростатическом поле. Граничные условия на границе «проводник-вакуум».
- •17. Электроемкость уединенного проводника. Единица электроемкости.
68. Излучение диполя. Применение электромагнитных волн.
Простейшим излучателем электромагнитных волн является электрический диполь, электрический момент которого изменяется во времени по гармоническому закону р = р0cost, где р0 — амплитуда вектора р. Примером подобного диполя может служить система, состоящая из покоящегося положительного заряда +Q и отрицательного заряда -Q, гармонически колеблющегося вдоль направления р с частотой .
Характер электромагнитного поля диполя зависит от выбора рассматриваемой точки. Особый интерес представляет так называемая волновая зона диполя — точки пространства, отстоящие от диполя на расстояниях r, значительно превышающих длину волны (r>>),— так как в ней картина электромагнитного поля диполя сильно упрощается. Это связано с тем, что в волновой зоне диполя практически остаются только «отпочковавшиеся» от диполя, свободно распространяющиеся поля, в то время как поля, колеблющиеся вместе с диполем и имеющие более сложную структуру, сосредоточены в области расстояний r<=.
Если волна
распространяется в однородной
изотропной среде, то время прохождения
волны до точек, удаленных от диполя на
расстояние r,
одинаково.
Поэтому во всех точках сферы, центр
которой совпадает с диполем, фаза
колебаний одинакова, т. е. в волновой
зоне волновой фронт будет сферическим
и, следовательно, волна, излучаемая
диполем, есть сферическая волна. В
каждой точке векторы Е
и Н
колеблются по закону cos(t-kr),
амплитуды
этих векторов пропорциональны 1/rsin
(для вакуума), т. е. зависят от расстояния
r
до излучателя
и угла
между направлением радиуса-вектора
и осью диполя. Отсюда следует, что
интенсивность излучения диполя в
волновой зоне I~sin2/r2.
Зависимость I
от
при заданном значении r,
приводимая
в полярных координатах (рис.228),
называется диаграммой
направленности излучения диполя.
Как видно
из приведенной диаграммы, диполь сильнее
всего излучает в направлениях,
перпендикулярных его оси (=/2).
Вдоль своей оси (=0
и =)
диполь не излучает вообще. Диаграмма
направленности излучения диполя
позволяет формировать излучение с
определенными характеристиками
и используется при конструировании
антенн.
Впервые электромагнитные волны были использованы через семь лет после опытов Герца. 7 мая 1895 г. преподаватель физики офицерских минных классов А.С.Попов на заседании Русского физико-химического общества продемонстрировал первый в мире радиоприемник, открывший возможность практического использования электромагнитных волн для беспроволочной связи, преобразившей жизнь человечества. Первая переданная в мире радиограмма содержала лишь два слова: «Генрих Герц». Изобретение радио Поповым сыграло огромную роль в деле распространения и развития теории Максвелла.
Для электромагнитных волн характерно явление дифракции — огибания волнами различных препятствий. Именно благодаря дифракции радиоволн возможна устойчивая радиосвязь между удаленными пунктами, разделенными между собой выпуклостью Земли. Длинные волны применяются в фототелеграфии, короткие волны применяются в телевидении для передачи изображений на небольшие расстояния (немногим больше пределов прямой видимости). Электромагнитные волны используются также в радиогеодезии для очень точного определения расстояний с помощью радиосигналов, в радиоастрономии для исследования радиоизлучения небесных тел и т. д.