
Радиотехнические цепи и сигналы. Лазаренко С.В / РТС Заочники 2014 / Лекции ППУ / Раздел №1 ПРДУ / Лекция №3
.docЛекция №3
Тема: УМНОЖИТЕЛИ ЧАСТОТЫ
1. Назначение, принцип действия и основные параметры
Умножители частоты в структурной схеме радиопередатчика (см. рис. 2.1) располагаются перед усилителями мощности ВЧ или СВЧ колебаний, повышая в требуемое число раз частоту сигнала возбудителя. Умножители частоты могут также входить в состав и самого возбудителя или синтезатора частот. Для входного и выходного сигнала умножителя частоты запишем:
(17.1)
где n — коэффициент умножения частоты в целое число раз.
Классификация умножителей частоты возможна по двум основным признакам: принципу действия, или способу реализации функции (17.1), и типу нелинейного элемента. По принципу действия умножители подразделяют на два вида: основанные на синхронизации частоты автогенератора внешним сигналом (см. разд. 10.3), в п раз меньшим по частоте (рис. 17.1,а), и с применением нелинейного элемента, искажающего входной синусоидальный сигнал, и выделением из полученного многочастотного спектра требуемой гармоники (рис. 17.1,б).
Рис. .1. Умножители частоты
По типу используемого нелинейного элемента умножители частоты второго вида подразделяют на транзисторные и диодные.
Основными параметрами умножителя частоты являются: коэффициент умножения по частоте n; выходная мощность n-й гармоники Рn, входная мощность 1-й гармоники Р1, коэффициент преобразования Кпр=Рn/Р1; коэффициент полезного действия =Рn/Р0 (в случае транзисторного умножителя), уровень подавления побочных составляющих.
Недостаток умножителей частоты (рис. 17.1, а) первого вида состоит в сужении полосы синхронизма с увеличением номера гармоники п. У умножителей частоты второго вида уменьшается коэффициент преобразования Кпр с повышением п. Поэтому обычно ограничиваются значением n = 2 или 3 и при необходимости включают последовательно несколько умножителей частоты, чередуя их с усилителями.
2. Транзисторный умножитель частоты
Схема транзисторного умножителя частоты (рис. 17.2) и методика его расчета практически ничем не отличаются от усилителя.
Необходимо только выходную цепь генератора настроить на n-ю гармонику и выбрать значение угла отсечки =120/n, соответствующее максимальному значению коэффициента n(). При расчете выходной цепи коэффициент разложения косинусоидального импульса по 1-й гармонике 1() следует заменить на коэффициент по n-й гармонике n(). Контур в выходной цепи, настроенный в резонанс с n-и гармоникой сигнала, должен обладать удовлетворительными фильтрующими свойствами.
Рис. 17.2. Схема транзисторного умножителя частоты
Коэффициент умножения схемы на рис. 17.2 обычно не превышает 3–4 раз при КПД, равном 10–20%.
3. Диодные умножители частоты
Работа диодных умножителей частоты основана на использовании эффекта нелинейной емкости. В качестве последней используется барьерная емкость обратно смещенного р-n-перехода. Полупроводниковые диоды, специально разработанные для умножения частоты, называются варакторами. При =0,5 и 0=0,5 В для нелинейной емкости варактора получим:
, (2)
где и - обратное напряжение, приложенное к p-n-переходу.
График нелинейной функции (17.2) показан на рис. 17.3.
Рис. 17.3. График нелинейной функции
Заряд, накапливаемый нелинейной емкостью, с напряжением и током связаны зависимостями:
, (3)
Две основные схемы диодных умножителей частоты с варакторами приведены на рис. 17.4.
Рис. 17.4. Диодные умножители частоты с варакторами
В схеме диодного умножителя параллельного вида (рис. 17.4, а) имеются два контура (или фильтра) последовательного типа, настроенные в резонанс соответственно с частотой входного и выходного n сигналов. Такие контуры имеют малое сопротивление на резонансной частоте и большое - на всех остальных (рис. 17.5).
Рис. 17.5.Зависимость сопротивления контура от частоты
Поэтому первый контур, настроенный в резонанс с частотой входного сигнала о, пропускает только 1-ю гармонику тока, а второй контур, настроенный в резонанс с частотой выходного сигнала n, - только n-ю гармонику. В результате ток, протекающий через варактор, имеет вид:
, (4)
Поскольку емкость варактора (17.2) есть нелинейная функция, то согласно (17.3) при токе (17.4) напряжение на варакторе отлично от синусоидальной формы и содержит гармоники.
Одна из этих гармоник, на которую настроен второй контур, проходит в нагрузку.
Таким образом, с помощью нелинейной емкости в устройстве происходит преобразование мощности сигнала с частотой в сигнал с частотой n, т.е. умножение частоты.
Аналогичным образом работает вторая схема умножителя частоты последовательного вида (рис. 17.4, б), в которой имеется два контура (или фильтра) параллельного типа, настроенные в резонанс соответственно с частотой входного и выходного n сигналов. Такие контуры имеют большое сопротивление на резонансной частоте и малое - на всех остальных. Поэтому напряжение на первом контуре, настроенном в резонанс с частотой входного сигнала , содержит только 1-ю гармонику, а на втором контуре, настроенном в резонанс с частотой выходного сигнала n, - только n-ю гармонику. В результате напряжение, приложенное к варактору, имеет вид:
, (5)
где U0 - постоянное напряжение смещения на варакторе.
Поскольку емкость варактора (17.2) есть нелинейная функция, то согласно (17.3) при напряжении (17.5) ток, протекающий через варактор, отличен от синусоидальной формы и содержит гармоники. Одна из этих гармоник, на которую настроен второй контур, проходит в нагрузку. Таким образом, с помощью нелинейной емкости в схеме происходит преобразование мощности сигнала с частотой в сигнал с частотой n, т.е. умножение частоты.
Варакторные умножители частоты в ДЦВ диапазоне при n=2 и 3 имеют высокий коэффициент преобразования Кпр=Pn/P1=0,6…0,7. При больших величинах п в СВЧ диапазоне значение Кпр уменьшается до 0,1 и ниже.