
- •Федеральное агентство по образованию
- •1.2. Основные характеристики эвм.
- •1.2. Классификация и области применения эвм различных классов.
- •2.Функциональная и структурная организация процессора.
- •2.1. Общие принципы построения современных эвм.
- •2.2 Назначение и состав процессора.
- •3. Организация памяти эвм.
- •3.1 Иерархия памяти, кэш-память.
- •4. Иерархия управляющей информации, основные стадии выполнения команды.
- •4.1 Архитектура системы команд.
- •I Выполпйиие операции н алу I
- •5. Организация ввода-вывода, периферийные устройства.
- •5.1 Каналы и интерфейсы ввода вывода
- •5.2 Печатающие устройства (принтеры).
- •5.3Модемы.
- •5.4 Видеосистемы.
- •6. Архитектурные особенности организации эвм различных классов.
- •6.1 Обзор интерфейсов ввода-вывода.
- •6.2 Характеристика современных интерфейсов ввода-вывода.
- •7. Классификация вычислительных систем.
- •7.1 Типовые вычислительные структуры и программное обеспечение
- •Общего назначении
- •7.2. Системы с конвейерной обработкой данных
- •7.4 Ассоциативные вычислительные системы
- •7.6.Многопроцессорные вычислительные системы.
- •8.Классификация и архитектура вычислительных сетей.
- •8.1. Общие понятия.
- •8.2.Основные компоненты вычислительной сети
- •8.3. Классификация вычислительных сетей.
- •9. Глобальная вычислительная сеть Internet.
- •10. Структура и характеристики систем телекоммуникаций: коммутация и маршрутизация телекоммуникационных систем, цифровые сети связи.
- •10.1 Типы сетей, линий и каналов связи.
- •10.2 Аналоговое и цифровое кодирование данных.
- •10.3 Коммутация в сетях.
- •10.4 Маршрутизация пакетов.
- •11.Эффективность функционировая вычислительных машин, систем,сетей и телекоммуникаций; пути её повышения.
- •12. Переспективы развития вычислительных средств.
- •Основная литература
- •Дополнительная литература.
6.2 Характеристика современных интерфейсов ввода-вывода.
По способу передачи информации интерфейсы подразделяются на параллельные и последовательные. В параллельном интерфейсе все биты передаваемого слова (обычно байта) передаются по нескольким ЛС одновременно (интерфейс Centronics - LPT-порт). В последовательном интерфейсе биты передаются друг за другом обычно по одной ЛС (интерфейс RS-232C - СОМ-порт ЭВМ).
Важным параметром интерфейсов является пропускная способность, что обусловлено ростом объемов передаваемой информации. Очевидно, что при одинаковом быстродействии приемопередающих цепей и пропускной способности ЛС по скорости передачи данных параллельный интерфейс должен превосходить последовательный. Однако повышение производительности за счет увеличения тактовой частоты передачи данных не дает желаемого эффекта, поскольку в случае параллельного интерфейса начинают проявляться такие недостатки как «перекос» сигнала, искажение уровня сигналов и т.д.
Для интерфейса, соединяющего два устройства, различают три возможных режима обмена - дуплексный, полудуплексный и симплексный. Дуплексный режим позволяет по одному каналу связи одновременно передавать информацию в обоих направлениях. Полудуплексный режим позволяет передавать информацию в противоположных направлениях поочередно. Симплексный (односторонний) режим предусматривает только одно направление передачи информации,
Другим немаловажным параметром интерфейса является допустимое удаление соединяемых устройств. Оно ограничивается как частотными свойствами кабелей, так и помехозащищенностью интерфейсов. Параллельные интерфейсы чаще накладывают более жесткие ограничения на этот параметр, например, RS-232C позволяет использовать кабели длиной в десятки метров, в то время как Centronics ограничен в длине единицами метров. Как правило, чем длиннее соединительный кабель, тем ниже предел его пропускной способности, т.е. если с длинным кабелем возникают проблемы передачи, то необходимо либо менять кабель на более качественный или (и) короткий, либо снижать физическую скорость обмена
С появлением USB и FireWire в качестве характеристики интерфейса стала фигурировать топология соединения Для интерфейсов RS-232C и Centronics практически однозначно применялась двухточечная топология PC - устройство (или PC - PC). USB и FireWire реализуют древовидную топологию, в которой внешние устройства могут быть как оконечными, так и разветвителями. Эта топология позволяет подключать множество устройств к одному порту USB или FireWire.
Хаб / «функция» 1
|
Хаб / «функция» I
|
Хост-хаб 1
| ||||||
|
Клавиатуре
|
Монитор
|
|
PC
| ||||
Т
|
1 U U
|
Ут
|
1 1
|
|
V \
|
J
|
| |
|
|
Г
|
( Г 1 П
| |||||
п
|
п
|
П
|
т
| |||||
Перо
|
Мышь
|
Динамит
|
|
Микрофон
|
Телефон
|
Т t Т 1 Т
сфунщия» «Функция» «Функция» «Функция! «Функция»
Рис. 6.1 Пример подключения устройств USB.
В таблице приведены характеристики основных внешних интерфейсов.
Интерфейс
|
Способ передачи
|
Максимальная скорость передачи
|
Максим аль нов удаление
|
Под ключаемое оборудование
|
RS-232C СОМ-порт
|
последовательный
|
20 Кбит/с
|
15 м
|
Мышь , модем
|
Centronics LPT-порт
|
параллельный
|
2 Мбайта/с
|
2 м (до 10 м при использовании спец. кабеля]
|
Принтеры, сканеры
|
Ultra SCSI
|
параллельный
|
80 Мбайт/с
|
1.5 м
|
накопителы, сканеры
|
USB
|
последовательный
|
12 Мбит/с
|
5 м (при использовании экранированной витой пара]
|
|
FireWare
|
последовательный
|
400 МОит/с
|
4.5м
|
накопители, видеооборудование
|