
- •3.Изучение основных теоретических понятий в подготовительный период обучения грамоте.
- •4.Дидактические условия организации самостоятельной работы учащихся.
- •5. Обучение младших школьников решению задач разными методами.
- •6. Роль и место внеклассного чтения в подготовке школьника-читателя (система н.Н. Светловской)
- •7. Творческая деятельность младших школьников в учебном процессе.
- •1 Группа - "Познание".
- •2 Группа - "Создание".
- •3 Группа - "Преобразование".
- •Сумма не меняется, если какую-нибудь группу рядом стоящих слагаемых заменить их суммой. Свойства вычитания
- •Свойства умножения
- •Свойства деления
- •3. На нуль делить нельзя!
- •10.Мотивация учебно-познавательной деятельности младших школьников.
- •11. Введение новых понятий и соответствующих действий на примере изучения тем «Умножение» и «Деление».
- •I. Теоретико – множественный подход.
- •II.Величинный подход (Давыдов-Эльконин и Петерсон).
- •IV. Через понятие части – целое (через понятие кол-во частей)
- •I. Теоретико – множественный подход.
- •II.Величинный подход.
- •13. Дифференцированный подход к обучению детей с различным уровнем готовности к школе.
- •1. Десяток
- •15. Основной период обучения грамоте. Структура урока изучения нового в основной период обучения грамоте.
- •16. Контроль и оценка в учебном процессе начальной школы.
- •17. Формирование навыков устных вычислений (на примере навыков внетабличного сложения, вычитания и умножения).
- •21.Особенности восприятия художественного произведения младшими школьниками (работы о.И. Никифоровой, л.Н. Рожиной).
- •22. Проблемное обучение в учебном процессе начальной школы
- •23. Формирование навыков арифметических операций над многозначными числами.
- •24. Изучение правил русской графики в начальной школе
- •25.Психолого-педагогические условия обучения одаренных детей.
- •Билет 27. Методика изучения морфемного состава слова в начальных классах
- •28. Гуманизация образовательного процесса в начальной школе.
- •29. Форма и пространство. Формирование представлении о геометрических телах.
- •30. Проблема обращения к личности писателя на уроках литературного чтения. Реализация монографического подхода
- •32. Формирование вычислительных навыков («Табличное сложение и вычитание». «Умножение и деление с остатком»).
- •Табличное сложение и вычитание натуральных чисел
- •Правила пользования таблицей
- •34. Профессионально-педагогическая культура учителя начальных классов.
- •36. Методика изучения синтаксических единиц в начальной школе.
- •40. Сущность и особенности образовательной, воспитательной и развивающей функции обучения в начальной школе.
- •41. Методика обучения умению решать задачи разными способами.
- •43. Содержание образования в начальной школе. Государственный образовательный стандарт.
- •44. Содержание темы “Уравнения. Решение уравнений”. Решение текстовых (прикладных) задач с помощью уравнений
- •45. Научно-методические основы построения букварей (азбук). Реализация вариативности в построении букварей (азбук).
- •48.Методика обучения младших школьников написанию изложения.
- •49. Методы обучения. Классификации методов обучения.
- •Работа над задачей с лишними данными.
- •Использование уравнений при решении задач.
- •Работа по классификации задач.
- •Работа над задачей с неопределенным условием.
- •51. Методика работы над проверяемыми орфограммами в начальной школе
- •52. Сущность и соотношение понятий «закономерность», «принцип», «правило».
- •53. Обучение учащихся математическому языку на примере изучения математических выражений
- •54. Лексическая работа в начальных классах
- •55. Структура и особенности процесса обучения в начальной школе
- •56. Организация обучения при расширении понятия числа в начальной школе. Изучение множества натуральных чисел и дробей.
- •57. Современные модели организации обучения первоначальному письму.
- •59.Формирование представлений об отношениях для точек «лежать между».
- •III. Аксиомы конгруэнтности
- •IV. Аксиомы непрерывности
- •V. Аксиома параллельности
- •1. Через две различные «точки» проходит «прямая»
- •2. На «прямой» имеется не менее двух «точек»
- •3. Из трёх «точек», лежащих на одной «прямой», одна и только одна расположена между двумя другими.
- •II. Аксиомы порядка
- •60. Методика работы над словами с непроверяемыми орфограммами в начальной школе
- •61. Индивидуализация и дифференциации в учебно-воспитательном процессе начальной школы
- •62. Внетабличное умножение и деление. Формирование навыков внетабличного умножения и деления.
- •63. Система изучения имени существительного в начальных классах.
- •1. Длина
- •2. Ёмкость.
- •3. Площадь.
- •Пояснительная записка
- •Общая характеристика курса
- •Место курса в учебном плане.
- •Описание ценностных ориентиров содержания учебного предмета
- •Результаты изучения курса
- •Обучающийся получит возможность для формирования:
- •Личностные универсальные учебные действия
- •Регулятивные универсальные учебные действия
- •Познавательные универсальные учебные действия
- •Чтение и начальное литературное образование 2 класс» Пояснительная записка
- •Содержание программы
- •2. Техника чтения
- •2 Й класс
- •3. Формирование приемов понимания прочитанного
- •2 Й класс
- •4. Элементы литературоведческого анализа, эмоциональное и эстетическое переживание прочитанного
- •5. Практическое знакомство с литературоведческими понятиями
- •6. Развитие устной и письменной речи
- •67. Сущность и особенности форм обучения в начальной школе
- •68. Методика изучения массы и веса в начальной школе
- •69. Система изучения морфемного состава слова: пропедевтические наблюдения, знакомство с особенностями однокоренных слов и корня слова, изучение приставки, суффикса, окончания.
- •70. Интегрированное обучение в начальной школе
- •71. Содержание и организация геометрического образования младших школьников.
- •72.Интеграция учебных дисциплин в начальных классах (на примере обучения написанию сочинений).
- •73. Формирование культуры здоровья учащихся в учебно-познавательном процессе начальной школы. Понятие здоровьесберегающих технологий.
- •74.Обучение учащихся умению решать задачи с помощью арифметических действий (арифметическим методом).
- •75. Методика обучения каллиграфии младших школьников.
- •76. Система развиваю обучения в начальной школе ( д.Б. Эльконин, в.В. Давыдов, л. В. Занков.)
- •77. Идеи развивающего обучения л.В. Занкова. Системы обучения математике на основе этих идей, их достоинства и недостатки.
- •79. Личностно - ориентированные технологии образовательного процесса.
- •80. Использование информационных технологий для проведения текущей, промежуточной аттестации в начальной школе.
- •81. Система изучения глаголов: задачи и содержание изучения глаголов.
- •82. Особенности реализации принципов обучения в начальной школе.
- •86. Методика изучения геометрических тел в начальной школе.
- •87.Организация работы с крупнобъемным произведением в начальной школе.
- •В соответствии с уровневой организацией произведения м. П. Воюшина выделяет 5 необходимых для полноценного чтения умений:
- •88. Ученический коллектив как объект и субъект в образовательном процессе начальной школы.
- •1.2.Общая характеристика методики изучения геометрических величин младшими школьниками.
- •1.4.Методические особенности изучения площади геометрических фигур и единиц ее измерения на уроках математики в начальной школе.
- •1. Сущность, закономерности и принципы педагогического процесса
- •Билет 92. Тема 9: методика изучения основных величин в начальных классах
- •96.Учебная деятельность как ведущая и как источник психического развития личности младшего школьника.
- •97. Особенности изложения темы «Деление с остатком» в курсе математики начальной школы.
- •100.Методика изложения темы «Величины» в курсе математики начальной школы на примере измерения времени
- •102. Основные дидактические концепции и системы в зарубежной педагогике и психологии ( Обобщенные характеристики)
- •103. Методика организации и проведения устного счета на уроках математики в начальной школе (на примере первого класса).
- •104. Методика изучения частей речи в начальных классах: особенности ознакомления младших школьников с личными местоимениями. Задачи изучения личных местоимений.
- •105. Становление и развития современной отечественной дидактической системы.
- •106. Методика изучения двузначных чисел и операций с ними в курсе математики начальной школы.
IV. Аксиомы непрерывности
С помощью аксиом принадлежности, порядка и конгруэнтности мы произвели сравнение отрезков, позволяющее заключить, каким из трёх знаков <, = или > связаны эти отрезки.
Указанных аксиом, однако, недостаточно 1) для обоснования возможности измерения отрезков, позволяющее поставить в соответствие каждому отрезку определённое вещественное число, 2) для обоснования того, что указанное соответствие является взаимно однозначным.
Для проведения такого обоснования следует присоединить к аксиомам I, II и III две аксиомы непрерывности.
IV, 1 (аксиома Архимеда). Пусть АВ и СD – произвольные отрезки. Тогда на прямой, определяемой точками А и В существует конечное число точек А1, А2, ..., Аn, расположенных так, что точка А1 лежит между А и А2, точка А2 лежит между А1 и А3, ..., точка Аn-1 лежит между Аn-2 и Аn, причём отрезки АА1, А1А2, ..., Аn-1An конгруэнтны отрезку CD и точка В лежит между А и Аn.
IV, 2 (аксиома линейной полноты). Совокупность всех точек произвольной прямой а нельзя пополнить новыми объектами (точками) так, чтобы 1) на пополненной прямой были определены соотношения «лежит между» и «конгруэнтен», определён порядок следования точек и справедливы аксиомы конгруэнтности III, 1 – 3 и аксиома Архимеда IV, 1, 2) по отношению к прежним точкам прямой определённые на пополненной прямой соотношения «лежит между» и «конгруэнтен» сохраняли старый смысл.
Присоединение к аксиомам I, 1 – 3, II и III, 1- 3 аксиомы Архимеда позволяет поставить в соответствие каждой точке произвольной прямой а определённое вещественное число х, называемое координатой этой точки, а присоединение ещё и аксиомы линейной полноты позволяет утверждать, что координаты всех точек прямой а исчерпывают множество всех вещественных чисел. Пользуясь этим, можно обосновать метод координат.
V. Аксиома параллельности
Самая последняя аксиома играет в геометрии особую роль, определяя разделение геометрии на две логически непротиворечивые и взаимно исключающие друг друга системы: евклидову и неевклидову геометрии.
В геометрии Евклида эта аксиома формулируется так.
V. Пусть а – произвольная прямая и А – точка, лежащая вне прямой а, тогда в плоскости α, определяемой точкой А и прямой а существует не более одной прямой, проходящей через А и не пересекающей а.
Долгое время геометры пытались выяснить, не является ли аксиома параллельности следствием всех остальных аксиом. Этот вопрос был решен Николаем Ивановичем Лобачевским, который доказал независимость аксиомы V от аксиом I – IV.
По-другому результат Лобачевского можно сформулировать так: если к аксиомам I – IV присоединить утверждение, отрицающее справедливость аксиомы V, то следствия всех этих положений будут составлять логически непротиворечивую систему (неевклидову геометрию Лобачевского).
Систему следствий, вытекающих из одних только аксиом I – IV обычно называют абсолютной геометрией. Абсолютная геометрия является общей частью как евклидовой, так и неевклидовой геометрий, ибо все предложения, которые могут быть доказаны только с помощью аксиом I – IV, верны как в геометрии Евклида, так и в геометрии Лобачевского.
Доказательство непротиворечивости аксиоматики Гильберта
Чтобы доказать непротиворечивость некоей теории Х, необходимо из материала другой, заведомо непротиворечивой, теории А построить такую модель, в которой выполняются все аксиомы теории Х. Если это удастся, теорию Х можно считать непротиворечивой. Следовательно, для того, чтобы доказать непротиворечивость гильбертовой системы, необходимо построить такую модель евклидовой геометрии, в которой выполнялись бы все аксиомы, предложенные Гильбертом.
Для построения такой модели, необходима вышеупомянутая заведомо непротиворечивая теория. В модели, построенной Гильбертом, такой теорией служит теория действительных чисел. Идея построения модели состояла в рассмотрении системы координат на плоскости. В такой системе каждой точке М плоскости соответствуют два числа х и у – её координаты. Чтобы понять суть построения модели забудем о плоскости и имеющейся на ней координатной системе, «точками» будем называть упорядоченные пары действительных чисел (х; у) т. е. пары (х; у) и (у; х) с различными х и у будем считать различными. Теперь попытаемся определить «прямую». Вспомним, что каждая прямая описывается в координатах линейным уравнением вида ax + by + c = 0, где хотя бы один из коэффициентов a и b отличен от нуля. Например, уравнение прямой, не параллельной оси ординат, имеет вид у = kx + l, или, что то же самое, ax + by + c = 0, где a = k, b = -1, c = l. Если же прямая параллельна оси ординат, ей соответствует уравнение x = p (т. е. уравнение ax + by + c = 0, где a = 1, b = 0, c = -p;). При этом если все коэффициенты уравнения ax + by + c = 0 умножить на одно и то же число k ≠ 0, то полученное уравнение будет описывать ту же прямую. Мы же в своей модели будем называть «прямой» любое линейное уравнение вида ax + by + c = 0, в котором хотя бы один из коэффициентов a и b отличен от нуля, причём коэффициенты рассматриваются с точностью до ненулевого множителя пропорциональности (при k ≠ 0 уравнения ax + by + c = 0 и (ak)x + (bk)y + kc = 0 считаются одной и той же прямой).
Далее, «точка» (х1; у1) лежит на «прямой», если числа х1 и у1 удовлетворяют указанному уравнению. Как видим, для определения «прямых», «точек» и расположения «точек» на «прямой» достаточно опереться на теорию действительных чисел. Легко проверить, что в указанной модели выполняются, например, такие аксиомы: