Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
102
Добавлен:
18.03.2016
Размер:
4.71 Mб
Скачать

В процессе эксплуатации вагона появляются различные неисправности, которые приходится устранять при техническом обслуживании или ремонте. Причинами этих неисправностей могут быть процессы естественного происхождения, ошибки при выборе конструкторских или технологических решений, нарушения правил технической эксплуатации вагона.

Неисправности, обусловленные процессами естественного происхождения,

проявляются чаще всего в виде значительного изнашивания деталей и сборочных единиц, накапливающегося в результате длительной эксплуатации вагона (постепенный отказ), или в форме внезапных отказов, вызванных исчерпанием конструкционным материалом своего ресурса (старение и явление усталости материала).

Изнашивание — это процесс разрушения или отделения материала с поверхности твердого тела и (или) накопления его остаточных деформаций при трении, проявляющийся в постепенном изменении размеров или формы тела. Изнашивание характеризуется величиной износа, интенсивностью и скоростью изнашивания.  Износ — это результат изнашивания, определяемый в установленных единицах. Величина износа может выражаться единицами длины, массы, объема и др. (соответственно линейный, массовый и о6ьемный износ).

 

Интенсивность изнашивания определяется отношением величины износа к объему выполненной работы, например, мм/км пробега.

Скорость изнашивания — это отношение величины износа к времени, в течение которого проходило изнашивание.

Рис. 1. Графики интенсивности (а) и скорости (б) изнашивания деталей

вагонов в зависимости от времени

Интенсивность и скорость изнашивания, как правило, не остаются постоянными во времени (рис. 1.). Процесс изнашивания обычно происходит в три стадии. На первой стадии (участок а) происходит приработка детали, сопровождаемая интенсивным износом. Далее процесс изнашивания стабилизируется (участок b), скорость изнашивания практически постоянная (рис. 1,б). Этот участок характеризует нормальную работу узла. Постепенное изменение размеров трущихся деталей, приводящее к ухудшению условий смазывания, появлению динамических нагрузок в соединении и др., вызывает катастрофическое увеличение скорости изнашивания на участке с.

Накопление статистических данных по характеру изнашиваемости различных деталей вагонов позволяет установить допустимые износы деталей (на рис. 1.  и обоснованно планировать межремонтные циклы (сроки или пробеги).

Изнашивание является результатом трения соприкасающихся частей машин друг с другом или с окружающей средой (для вагонов - элементы железнодорожного пути, перевозимый груз и др.).

Согласно стандарту внешнее трение — это явление сопротивления относительному перемещению, возникающее между двумя телами в зонах соприкосновения поверхностей по касательной к ним, сопровождаемое диссипацией энергии. По характеру относительного перемещения различают трение покоя (при микроперемещениях до перехода к относительному движению, относительная скорость перемещения близка к нулю) и трение движения трение двух тел, находящихся в относительности движении.  Трение движения подразделяется на трение скольжения, при котором скорости относительного движения тел в точке контакта различны по величине или направлению, и трение качения, происходящее при одинаковых по величине и направлению скоростях относительно движения. «Чистое» трение качения возможно только теоретически. В практике оно всегда сопровождается пусть даже незначительным проскальзыванием некоторых элементов деталей, образующих пару трения.

По характеру смазывания контакта соприкасающихся поверхностей в парах трения различают трение без смазочного материала (детали фрикционных гасителей колебаний, поглощающих аппаратов, механизма автосцепки, тормозные колодки и обод колеса и др.), трение с граничной смазкой (толщина слоя смазочного материала от размеров одной молекулы до 0,1 мкм — смазывание деталей тормозных приборов распыленным в воздухе маслом) и трение с жидкой или вязкопластической смазкой (детали подшипников и др.).

Равномерный прокат колес - естественный износ поверхности катания обода. В результате уменьшается диаметр колеса и увеличивается высота гребня относительно поверхности качения. При большом прокате нарушается взаимодействие колеса с элементами стрелочного перевода при проходе крестовин. Поэтому глубина проката ограничена:

при скорости движения до 120 км/ч:

грузовые и рефрижераторные вагоны - не более 9 мм,

пассажирские в местных и пригородных поездах - не более 8 мм;

пассажирские дальнего следования - не более 7 мм

при скорости движения 120-140 км/ч:

пассажирские вагоны - не более 5 мм.

Равномерный прокат измеряют инструментом который называется “абсолютный шаблон”. Для измерения шаблон устанавливают на гребень колеса. отсчет на шкале вертикального движка.Цена деления 1 мм.

Неравномерный прокат колес - это прокат, характеризующийся различной глубиной по кругу катания колеса. Изменение  глубины проката происходит плавно на расстоянии одной пятой и более длины круга катания колеса. Поэтому неравномерный прокат трудно выявить при осмотре колес под вагоном.

При наличии неравномерного проката увеличивается динамическое воздействие вагона на путь, поэтому ограничена разница между наибольшей и наименьшей величиной проката на одном колесе. Эта разница допускается в пассажирских поездах не более 2 мм, а в грузовых ( у грузовых вагонов) - более 3 мм.

Неравномерный прокат измеряют абсолютным шаблоном в месте максимального износа и с каждой стороны от этого места на расстоянии до 500 мм.

Тонкий гребень. Уменьшение толщины гребня происходит в результате его естественного износа в процессе эксплуатации вагона. Наименьшая толщина гребня ограничена, так как в случае тонкого гребня могут быть удары его в остряк стрелки  при противошерстном движении. ПТЭ и инструкцией осмотрщику вагонов для скоростей движения до 120 км/ч толщина гребня, измеренная на расстоянии 18 мм от его вершины, установлена в пределах: не более 33 и не менее 25 мм.

По указанию МПС от 1995 г. № М 535 у развернутых колесных пар в эксплуатации допускается толщина гребня одного из колес не менее 23 мм, если у другого  колеса толщина гребня не менее 25 мм.

Измерение толщины гребня производят абсолютным шаблоном. Для измерения шаблон устанавливают  на гребне колеса и горизонтальный движок прижимают к гребню. Размер считывают на шкале под движком. Цена деления 1 мм.

Вертикальный подрез гребня. Износ гребня, в результате которого угол наклона гребня к его основанию увеличивается до 90° и на гребне образуется вертикальная площадка. Подрезанный гребень при движении по стрелке при противошерстном движении может ударить в остряк или при не подходе остряка взрезать стрелку. Поэтому величина вертикального подреза гребня  ограничена.  Оценку  подреза  гребня  производят  специальным  шаблоном. Вертикальную подвижную ножку шаблона прижимают к внутренней грани гребня. Колесную пару не допускают к эксплуатации, если риска на движке шаблона, на высоте 18 мм от основания гребня соприкасается с подрезанной частью гребня.

Остроконечный накат гребня - выступ  металла по круговому периметру гребня в месте перехода изношенной поверхности к вершине с выкружкой по радиусу 12,5 мм. Остроконечный накат опасен тем, что при противошерстном движении по стрелке колесо может накатиться выступом металла на остряк и перекатиться через остряк. Поэтому начиная с 1998 г. вагоны, у которых обнаружен остроконечный накат, отцепляют для смены колесной пары.

Выявление остроконечного наката колес производят визуально. Инструментального метода не существует, что является в ряде случаев причиной субъективной оценки этого вида дефекта.

Ползун - это плоское место или местный износ поверхности катания в результате скольжения колеса по рельсу. Образуется в результате заклинивания колесной пары при торможении или вследствие какой либо другой причины. Например,  известны случаи заклинивания колесной пары в случае высокого нагрева неисправной буксы. Ползун может вызвать опасные последствия воздействия на путь. Может быть излом рельсов от ударов неисправного колеса или насечки на рельсах. Может быть сход вагона, в особенности на стрелочных переводах. Поэтому глубина ползуна- представляющая  высоту сегмента изношенного места, в эксплуатации ограничена. В соответствии с ПТЭ ползуны, глубиной до 1 мм не бракуют. При обнаружении ползуна более 1 мм, но не более 2 мм, разрешается довести вагон до ближайшего пункта технического обслуживания вагонов, имеющего средства для смены колесных пар, со скоростью: пассажирский не свыше 100 км/ч, грузовой - не свыше 70 км/ч. На этом пункте вагон должен быть отцеплен для смены колесной пары.

При глубине ползуна свыше 2 мм разрешается следование поезда с перегона до ближайшей станции с ограничением скорости.

-         -при глубине от 2 до 6 мм - со скоростью 15 км/ч.

-         при глубине от 6 до 12 мм - со скоростью 10 км/ч.

-         при глубине свыше 12 мм разрешается следование со скоростью 10 км/ч с исключением вращения колесной пары (на тормозных башмаках). На станции у вагона должна быть заменена колесная пара.

Глубину ползуна определяют абсолютным шаблоном. Для этого измеряют прокат колеса рядом с ползуном и посередине ползуна. Разница этих измерений представляет глубину ползуна.

В случае отсутствия абсолютного шаблона глубину ползуна можно оценить измерив его длину.

Зависимость глубины ползуна от его длины.

Длина ползуна, мм

50

60

75

85

100

145

205

Глубина ползуна, мм

0,7

1,0

1,5

2,0

3

6

12

Навар - это смещение металла на поверхности обода колеса в виде выступа. Навар образуется при кратковременном проскальзывании колеса по рельсу на 20-30 мм. Не допускаются к эксплуатации колесные пары с наваром толщиной более 0,5 мм у пассажирских и более 1 мм у грузовых вагонов.

В случае обнаружения навара более указанных размеров, но не более 2 мм на промежуточных станциях разрешается довести вагон до ближайшего пункта технического обслуживания вагонов, имеющего средства для смены колесных пар. При этом скорость движения ограничивают в пассажирских поезда не более 100 км/ч, в грузовых - не более 70 км/ч.

Определение величины навара производят абсолютным шаблоном. Измеряют прокат колеса на неповрежденном месте обода, рядом с наваром. Затем движок шаблона ставят на наплыв металла и считывают показание. Разница двух измерений даст толщину навара.

Местное уширение обода колеса - раздавливание обода и местный наплыв металла в зоне фаски с наружной грани обода. Опасный дефект, так как при пошерстном движении колесо с наплывом может не выкатиться на рамный рельс и будет раскантовывать путь. Поэтому в эксплуатации не допускается местное уширение более 5 мм.

Определяется путем измерения с помощью кронциркуля и линейки ширины обода в месте наибольшего уширения и в месте где нет уширения (без учета размера фаски).

Поверхностный откол у наружной грани обода . В результате откола уменьшается ширина обода и может быть опасность схода колеса в  кривых участках пути с боковым износом рельсов. Поэтому запрещается эксплуатация вагона, если ширина оставшейся части обода в месте откола менее 120 мм. Колесную пару бракуют также если глубина в месте откола по радиусу колеса более 10 мм или в поврежденном месте есть трещина.

Откол кругового наплыва . Местный поверхностный откол кругового наплыва металла на фаску, выходящий за наружную грань обода. Требования к колесу такие же, как в случае поверхностного откола.

Излом колеса - разрушение колеса или откол и выпадение части колеса. Обычно по развившимся трещинам усталости металла.

Кольцевые выработки – запрещается выпускать в эксплуатацию и допускать к следованию вагоны имеющие кольцевые выработки у основания гребня или на участке пов-ти катания, с уклоном 1:20 глубиной более 1 мм и шириной более 15 мм, с укл. 1:7 глубиной более 2 мм и шириной более 20 мм

Неисправности автосцепного устройства, методы выявления

                    Основные неисправности автосцепного устройства      Осмотр и проверка автосцепного устройства при периодическом техническом обслуживании подвижного состава гарантирует надежную работу в межремонтные сроки. Однако в эксплуатации возможны случаи чрезмерного износа и повреждения деталей, проявления дефектов изготовления, которые могут вызвать нарушения нормального действия автосцепного устройства, а при определенных неблагоприятных условиях привести к саморасцепу автосцепок или излому отдельных деталей. Замок автосцепки в сцепленном состоянии удерживается в нижнем положении предохранительным устройством, надежное действие которого обеспечивается содержанием в определенных нормах размеров элементов деталей, входящих в это устройство. Наиболее часто встречающейся неисправностью является недействующий предохранитель от саморасцепа.                                      Предохранитель от саморасцепа.    При изломе верхнего плеча полностью отсутствует ограничение перемещения замка.   При изгибе верхнего плеча увеличивается расстояние между торцом плеча и упорной частью противовеса замкодержателя из-за чего увеличивается перемещение замка в кармане корпуса, в результате снижается надежность сцепления при натяжении поезда из-за уменьшения площади соприкосновения замков сцепленных автосцепок; замок может уйти в корпус настолько, что перестанет запирать сцепленные автосцепки. Кроме того, изогнутое плечо может упасть с полочки, вследствие чего также увеличится уход замка в карман корпуса.    При недостаточной длине верхнего плеча - оно спадет с полочки, пройдет под нее или упрется торцом в полочку и при соударении вагонов произойдет излом или изгиб плеча.    При длине верхнего плеча более допустимой во время сцепления ав-тосцепок верхнее плечо ложится на противовес замкодержателя, а не на по-лочку и предохранитель от саморасцепа выключается.    При недостаточной ширине верхнего плеча оно может пройти между серповидным приливом полочки и противовесом замкодержателя, не упираясь в него. Уход замка в корпус, в этом случае, ничем не ограничивается    При округлении кромок упорного торца верхнего плеча оно будет проскальзывать вверх противовеса, что приводит к выключению предохрани-теля.     Изгиб нижнего плеча предохранителя приводит к заклиниванию его о паз замка таким образом, что верхнее плечо останется приподнятым над полочкой, и будет проходить над противовесом замкодержателя.                                                            Замкодержатель.    При изломе противовеса будет полностью отсутствовать ограничение перемещения замка в карман корпуса.    При изгибе противовеса произойдет неисправность аналогичная с из-гибом верхнего плеча предохранителя.    При износе нижней части овального отверстия под действием сил трения о малый зуб соседней автосцепки замкодержатель может подняться на столько, что верхнее плечо предохранителя пройдет над противовесом и не будет препятствовать уходу замка в карман корпуса.    При износе верхней части овального отверстия замкодержатель опустит-ся, и верхнее плечо предохранителя пройдет над противовесом и не будет ограничивать перемещение замка в карман корпуса.    При износе упорной поверхности противовеса верхнее плечо предохранителя может выскользнуть вверх и выключить предохранитель от саморасцепа.                                                          Замок автосцепки.    При недостаточной толщине замка (у грузовых вагонов менее 48 мм, у пассажирских - менее 50 мм) сцепленные автосцепки не запираются и при возникновении тягового усилия малый зуб, и замок соседней автосцепки вый¬дут из зацепления.    При изгибе сигнального отростка во время сцепления замок заклини-вается и его рабочая часть выходит в зев корпуса не полностью, в результате чего верхнее плечо предохранителя остается на противовесе и предохранитель не включается.    При изломе или изгибе направляющего выступа замок может занять неправильное положение, при котором предохранитель оказывается выклю-ченным.    При изломе шипа для навешивания предохранителя будет полностью отсутствовать ограничение перемещения замка в карман корпуса.    При износе задней кромки овального отверстия под воздействием тя-гового усилия увеличивается выход замка в зев корпуса, и верхнее плечо предохранителя спадет с полочки.                                                        Валик подъемника.    При недостаточной длине цилиндрической части замок опирается кромкой овального отверстия на более тонкую квадратную часть валика и занимает неправильное положение, при этом верхнее плечо предохранителя спадает с полочки.    При выпадении валика замок выходит в зев корпуса и верхнее плечо предохранителя спадает с полочки.    При заклинивании валика подъемник широким пальцем удерживает предохранитель в положении, при котором верхнее плечо будет приподнято над противовесом.                                                       Расцепной привод.    При короткой цепи расцепного привода (возникновение тягового усилия или прохождение кривых участков пути), цепь при натяжении может повернуть валик подъемника в расцепленное состояние.    При длинной цепи можно не выявить неполное сцепление при неправильном положении расцепного рычага.                                                      Корпус автосцепки.    Уширение зева автосцепки за счет износа большого и малого зубьев или изгиба большого зуба приводит к выскальзыванию малого зуба и замка соседней автосцепки из контура зацепления под действием тягового усилия.    Изгиб полочки приводит к спаданию верхнего плеча предохранителя с нее.   Неправильное   положение   полочки   приводит   к   спаданию    плеча предохранителя с полочки или прохода его над противовесом замкодержателя.    Износ шипа для навешивания замкодержателя приводит к отпусканию замкодержателя, при этом верхнее плечо проходит над противовесом замкодержателя не ограничивает перемещение замка в кармане корпуса. Возможно спадание замкодержателя с шипа и заклинивание его между шипом и замком.    При наличии в кармане корпуса посторонних предметов или обледенения дна кармана мешающих замку занять правильное положение, возможно выключение предохранителя от саморасцепа.                                                      Поглощающий аппарат    Вагон с неисправным поглощающим аппаратом может привести к разрыву автосцепки, либо тягового хомута.    Разрыв поезда на перегоне классифицируется как брак, при этом последствия разрыва ведут к продолжительному занятию перегона, так как поезд с перегона приходится выводить частями.    По своей конструкции аппарат очень прост, но в работе даже для опытного осмотрщика несколько сложен. Сложность работы заключается в следующем: для того, чтобы сжать пружины на открытом стенде, всего на 70 мм (это ход нажимного конуса при полном сжатии) требуется нагрузка 22 тонны, в собранном же состоянии, для того, чтобы сжать эти пружины (через нажимной конус) потребуется нагрузка до 280 тонн. Нагрузка эта возрастает за счет специфического устройства клиньев и нажимного конуса, то есть за счет сухого трения клиньев о стенки корпуса. Давление фрикционных клиньев на стенки корпуса столь велико, что нередки случаи разрыва корпуса поглощающего аппарата буквально на куски.    Рассмотрим работу фрикционного аппарата. Поглощающий аппарат являет собой мощнейший амортизатор, предохранитель от резких рывков и ударов, который выдерживает нагрузку в 280 тонн. (Ш - 1 - ТМ). Теперь представим на миг, что лопнули пружины, корпус, то есть аппарат вышел из строя на 100%, нет мощного амортизатора, и станет ясно, какие резкие рывки и удары возникают в процессе эксплуатации (на маневровых горках, в пути следования) на детали, передающие нагрузку - раму и саму автосцепку.     Поэтому совершенно не случайно, в первую очередь, появляются трещины в ударно - тяговом устройстве именно там, где поглощающий аппарат теряет упругость, то есть перестает быть амортизатором, предохранителем.     Поглощающий аппарат находится на вагоне как бы в висячем (плавающем) состоянии. Задней частью упираясь в задние упорные угольники, передней, через упорную плиту, в передние упорные угольники, абсолютно не касаясь поддерживающей планки. Если лопнули пружины, поглощающий аппарат упадет всей своей тяжестью на поддерживающую планку тяговым хомутом. Сечение хомута 160-25 мм, вес аппарата в сборе 252 кг. Пружины лопнули, на ходу поезда, движение автосцепки ничто не ограничивает, значит, автосцепка постоянно смещается внутрь вагона, до упора автосцепки и выходит полностью, таская за собой тяговый хомут, который теперь уже лежит на поддерживающей планке, и весом в 250 кг усиленно трется о планку. Постоянно смещаясь так же усиленно трется хвостовик автосцепки о центрирующую балочку (этот признак, прежде всего, бросается в глаза при осмотре поезда). Из этого следует: При выходе автосцепки в нормальном состоянии - есть яркий металлический блеск на хвостовике автосцепки, доходящий до упора головы автосцепки. Необходимо посмотреть на тяговый хомут снизу. Если есть на тяговом хомуте яркий металлический блеск, выходящий из-под поддерживающей планки, размером суммарно с обеих сторон не менее 150 мм, это указывает, что аппарат неисправен (лопнули пружины); В растянутом состоянии - если есть яркий металлический блеск на хвостовике автосцепки, доходящий до упора головы автосцепки. Необходимо посмотреть на тяговый хомут снизу. Яркий металлический блеск на хомуте, выходящий из под поддерживающей планки в сторону хвостовика автосцепки, размером не менее 150 мм указывает, что аппарат - брак по той же причине. Если выход автосцепки более 100 мм, но нет вышеуказанных признаков, аппарат исправен. В сжатом состоянии - Яркий металлический блеск на хвостовике автосцепки (отчетливо виден в проем вагона) и на тяговом хомуте, выходящий из-под поддерживающей планки в сторону подпятника, размером менее 150 мм, указывает на просадку пружин. Величина металлического блеска (размер его) на тяговом хомуте будет зависеть от величины просадки пружин, (то есть размера просадки), поэтому не может быть конкретной.                             Выявление трещины корпуса поглощающего аппарата.    Разрыв корпуса поглощающего аппарата происходит за счет резкого сверхмощного давления клиньев на корпус. Разорвав корпус, клинья при сжатии трения на корпус не оказывают, а значит, только пружины воспринимают нагрузку при работе аппарата. Следовательно, энергоемкость аппарата равна сопротивляемости пружин, то есть 22 тонны. На ходу поезда 22 тонны не в состоянии сдерживать постоянное смещение автосцепки.    Таким образом, на хвостовике появится яркий металлический блеск от трения о заплечик центрирующей балочки, доходящий до упора головы автосцепки, но пружины целые и аппарат ни в коем случае не упадет на поддерживающую планку, а значит, никакого трения не будет. Следовательно, если есть яркий металлический блеск на хвостовике автосцепки (в любом состоянии сжатом, свободном), но нет яркого блеска на тяговом хомуте, необходимо тщательно осмотреть корпус поглощающего аппарата с торца. Если корпус и клинья не изношены, но покачиваются от легкого прикосновения крючком, то корпус обязательно будет лопнувшим.          При лопнувшем корпусе клинья будут покачиваться в любом состоянии аппарата, свободном или сжатом, независимо.                               Износ клиньев или корпуса поглощающего аппарата.    Клинья или корпус изношены, давления на стенки и соответственно трения нет, следовательно, аппарат работает так же на одних пружинах, а значит, и признаки будут те же самые. Если яркий металлический блеск на хвостовике автосцепки (в любом состоянии свободном, сжатом или растянутом), но нет блеска на хомуте, необходимо тщательно осмотреть корпус поглощающего аппарата с торца. При износе клиньев или корпуса, клинья обычно собираются в одно место (вниз), и свободно качаются. При, казалось бы, идентичных признаках необходимо помнить большую разницу в браковке. Никогда не ищи трещину в корпусе при износе клиньев или корпуса, так как при этих износах давления на стакан корпуса практически нет и поэтому разрыв корпуса почти невозможен. И наоборот, клинья, и корпус целы (не изношены), а автосцепка систематически смещалась (есть яркий металлический блеск на хвостовике), признаки указывают именно на разрыв корпуса аппарата. Таким образом, мы рассмотрели выявление неисправностей как: лопнувшие пружины, просадка пружин, трещина корпуса, а так же износ клиньев и корпуса поглощающего аппарата.                                Выявление потери упругости поглощающего аппарата.   Если клинья или корпус изношены, аппарат начнет работать только за счет пружин. Энергоемкость его падает в десять с лишним раз.  Это и есть потеря упругости поглощающего аппарата. То же самое произойдет и при лопнувшем корпусе аппарата.  Обнаружить аппарат, потерявший упругость довольно просто по яркому металлическому блеску на хвостовике автосцепки доходящим до упора головы автосцепки (то есть след постоянного систематического смещения автосцепки внутрь вагона и обратно).  У исправного аппарата такие смещения (трение) абсолютно невозможны. При признаке потери упругости необходимо осмотреть упорную плиту, так как именно на нее через автосцепку, приходится при маневрах сильный удар, и довольно часто происходит её излом на несколько частей.              Выявление неисправностей в деталях, передающих нагрузку на раму вагона.     Если ударно - тяговое устройство исправно, то смещение автосцепки (вперед - назад) практически ограничено размером не более 45 мм. Отверстие в хвостовике автосцепки размером 137 мм ширина клина автосцепки 92 мм, эта разница 45 мм и есть та величина свободного хода автосцепки. Размер этого хода, за счет трения о центрирующую балочку, отчетливо виден на любом вагоне и в любое время суток (легкая незначительная потертость, но строго ограниченного размера не более 50 мм.)                                         Неисправность тягового хомута.     Теперь представим, произошел излом любой полосы тягового хомута (верхней или нижней). В месте излома тяговая полоса непременно разойдется примерно на 40 мм (так как излом её происходит при резком рывке, а не ударе). Клин автосцепки погнется так же вперед, так как он ограничен в движении одной только полосой и качнется на 20 - 30 мм. Таким образом, смещение автосцепки, то есть ее трение увеличится на 80 мм, да плюс свободный ход, допустим 40 мм. Получился размер трения в 120 мм. Это условный размер, но он достаточно убедительно показывает, о чем может подсказать осмотрщику увеличенный размер смещения (трения) автосцепки о центрирующую балочку и ее заплечик. Именно след трения о заплечик в первую очередь бросается в глаза, даже при беглом осмотре.