
- •Федеральное государственное бюджетное образовательное учреждение высшего
- •Рецензент:
- •Общие методические указания
- •Лабораторная работа №1 Тема: Правила безопасности при работе в лаборатории общей химии. Элементы техники лабораторных работ. Весы и взвешивание
- •1.1 Техника безопасности при работе в лаборатории общей химии
- •1.2 Помощь при несчастных случаях
- •1.3 Правила обращения с реактивами
- •1.4 Химическая посуда и оборудование. Элементы техники лабораторных работ
- •1.4.1 Весы и взвешивание
- •1.4.2 Правила обращения с весами
- •1.4.3 Взвешивание цинка на аналитических весах
- •1.5 Необходимый уровень подготовки студентов
- •1.6 Вопросы для самоконтроля
- •Лабораторная работа №2 Тема: Определение молярной массы эквивалента цинка
- •2.1 Теоретические пояснения
- •2.2 Методика проведения опыта
- •2.3 Обработка результатов опыта
- •2.4 Примеры решения задач
- •2.5 Необходимый уровень подготовки студентов
- •2.6 Задания для самоконтроля
- •Тема: Основные классы неорганических соединений: оксиды, основания и амфотерные гидроксиды
- •3.1 Теоретические пояснения
- •3.2 Методика проведения опытов
- •3.2.1 Оксиды их получение и свойства
- •3.2.2 Гидроксиды, их получение и свойства
- •Лабораторная работа №4 Тема: Основные классы неорганических соединений: кислоты и соли
- •4.1 Теоретические пояснения
- •4.2 Методика проведения опытов
- •4.2.1 Кислоты, их получение и свойства
- •4.2.2 Соли, их получение и свойства
- •Опыт 5: Получение солей взаимодействием двух солей
- •4.3 Необходимый уровень подготовки студентов
- •4. Уметь писать уравнения реакций, отражающие химические свойства оксидов, гидроксидов, солей. Знать условия протекания до конца реакций ионного обмена
- •4.4 Задания для самоконтроля
- •Лабораторная работа №5 Тема: Кинетика химических реакций
- •5.1 Теоретические пояснения
- •5.2 Методика проведения опытов
- •5.3 Примеры решения задач
- •5.4 Необходимый уровень подготовки студентов
- •5.5 Задания для самоконтроля
- •Лабораторная работа №6 Тема: Химическое равновесие
- •6.1 Теоретические пояснения
- •6.2 Методика проведения опыта
- •6.3 Примеры решения задач
- •6.4 Необходимый уровень подготовки студентов
- •6.5 Задания для самоконтроля
- •Лабораторная работа №7 Тема: Синтез и исследование свойств координационных соединений
- •7.1 Теоретические пояснения
- •7.2 Методика проведения опытов
- •7.3 Необходимый уровень подготовки студентов
- •7.4 Задания для самоконтроля
- •Лабораторная работа №8 Тема: Приготовление растворов заданной концентрации
- •8.1 Теоретические пояснения
- •8.2 Методика проведения опыта
- •8.3 Примеры решения задач
- •8.4 Необходимый уровень подготовки студентов
- •8.5 Задания для самоконтроля
- •Лабораторная работа № 9 Тема: Гидролиз солей
- •9.1 Теоретические пояснения
- •Смещение равновесия в процессах гидролиза солей
- •9.2 Методика проведения опытов
- •8.3 Задания для самоконтроля
- •8.4 Примеры решения задач
- •8.5 Необходимый уровень подготовки студентов
- •Лабораторная работа №10 Тема: Окислительно-восстановительные реакции
- •10.1 Теоретические пояснения
- •10.2 Методика проведения опытов
- •10.3 Необходимый уровень подготовки студентов
- •10.4 Задания для самоконтроля
- •Лабораторная работа №11 Тема: Электрохимический ряд напряжений металлов
- •11.1 Теоретические пояснения
- •11.2 Методика проведения опытов
- •11.4 Задания для самоконтроля
- •Лабораторная работа № 12 Тема:Гальванический элемент
- •12.1 Теоретические пояснения
- •12.2 Методика проведения опыта
- •12.3 Необходимый уровень подготовки студентов
- •12.4 Задания для самоконтроля
- •Лабораторная работа №13 Тема: Изучение свойств азотной, серной и ортофосфорной кислот
- •13.1 Теоретические пояснения
- •13.2 Методика проведения опытов
- •13.3 Необходимый уровень подготовки студентов
- •13.4 Задания для самоконтроля
- •Лабораторная работа №14 Тема: Электролиз солей
- •14.1 Теоретические пояснения
- •14.2 Методика проведения опыта
- •14.3 Необходимый уровень подготовки студентов
- •14.4 Задания для самоконтроля
- •Лабораторная работа № 15 Тема: Коррозия металлов. Защита металлов от коррозии
- •15.1 Теоретические пояснения
- •15.2 Методика проведения опыта
- •Опыт 7: Пассивация алюминия.
- •15.3 Необходимый уровень подготовки студентов
- •15.4 Задания для самоконтроля
- •Содержание
- •Лукашов Сергей Викторович
- •Методические указания по выполнению лабораторных работ
- •241037. Г. Брянск, пр. Станке Димитрова, 3, редакционно-издательский
14.4 Задания для самоконтроля
1. Сколько времени продолжался электролиз сульфата железа (III) при силе тока 2,5 А, если масса катода увеличилась на 4 г, а выход по току составил 73%? Запишите схему электролиза водного раствора сульфата железа (III) с угольными электродами.
2. Какое время понадобится для нанесения цинкового покрытия толщиной 10-3м при силе тока 20А и выходе по току 85%? Плотность цинка 7×103 кг/м3.
3. При электролизе водного раствора CrCl3 за 15 часов на поверхности катода площадью 1,5×10-2м2 образовался слой металла толщиной 1,5×10-3м и выделился водород объемом 10 литров. Плотность хрома 7,14×103 кг/м3. Рассчитайте силу тока в цепи и выход хрома по току.
4. Рассмотрите электродные процессы на примерах электролиза водного раствора сульфата меди: а) с медным; б) с нерастворимым анодом и электролиза водного раствора сульфата цинка а) с цинковым; б) с нерастворимым анодом.
5. При электролизе водного раствора сульфата цинка с нерастворимыми электродами на катоде в течение 2 ч выделилось 0,235 г цинка. Ток в цепи 1, 34 А. Рассчитайте выход цинка по току.
Лабораторная работа № 15 Тема: Коррозия металлов. Защита металлов от коррозии
Цель: изучение условий возникновения коррозионных микроэлементов, их моделей, а так же влияния различных факторов на скорость электрохимической коррозии металлов.
Оборудование: металлические пластины – стальная, свинцовая, медная, цинковая, алюминиевая, нержавеющей стали; ферроксилининдикатор, бумажный фильтр, наждачная бумага, U-образная трубка, милливольтметр, хлорид натрия (кристаллический), 0,1 М раствор H2SO4, раствор сульфата меди (II), раствор K3[Fe(CN)6], конц. HNO3, 2н раствор HCI, 0,4 М раствор уксусной кислоты, раствор иодида калия, раствор 3% NaCI, раствор для воронения (на 1 литр 600 г NaOH и 60 г NaNO2), пробирки, дистиллированная вода.
15.1 Теоретические пояснения
Коррозией называют процесс разрушения металла в результате химического или электрохимического воздействия окружающей среды. Скорость коррозии выражают либо через потерю массы образца в единицу времени на единицу площади поверхности, либо через уменьшение толщины металла в единицу времени.
По характеру разрушения металла различают равномерную и местную коррозию. Равномерная коррозия распределяется по всей поверхности металла, а местная коррозия сосредоточена на отдельных участках
По механизму коррозионного процесса различают химическую или электрохимическую коррозию. Химическая коррозия характерна для сред не проводящих электрический ток. В процессе химической коррозии происходит прямое взаимодействие металла с окислителем.
Электрохимическая коррозия возникает в средах, обладающих ионной проводимостью. В этом случае процесс коррозии является анодным растворением металла под влиянием катодного восстановления окислителя. Наиболее распространенными окислителями в коррозионном процессе являются ионы водорода и молекулы кислорода. Коррозия с участием ионов водорода называется коррозией с выделением водорода или коррозией с водородной деполяризацией. В наиболее простом виде электродные процессы могут быть представлены уравнениями:
Me - ne- → Men+
2H+ +2e → H2
Коррозия с выделением водорода возможна, если потенциал водородного электрода положительнее потенциала металла. Скорость коррозии в этом случае определяется скоростью реакции выделения водорода, зависящей от природы металла и вида поверхности, на которой выделяется водород. Скорость коррозии зависит так же от рН и температуры раствора, с которым реагирует металл
Коррозия с участием кислорода называется коррозией с поглощением кислорода или коррозией с кислородной деполяризацией. В наиболее простом виде электродные процессы могут быть представлены уравнениями:
Me - ne- → Men+
O2 + 2H2O + 4e- → 4OH–
Коррозия с поглощением кислорода возможна, если потенциал кислородного электрода положительнее потенциала металла. Скорость коррозии в этом случае обычно определяется скоростью диффузии кислорода и возрастает при перемешивании раствора и увеличении концентрации растворенного кислорода.
На основе понимания механизма электрохимической коррозии разработаны разнообразные способы борьбы с ней.
Легирование – это введение в состав сплава компонентов, повышающих устойчивость металлов к коррозии. Например, в качестве легирующих добавок к железу применяют никель и хром (нержавеющая сталь).
В некоторых случаях скорость коррозии лимитируется анодными реакциями. Обычно это наблюдается у металлов способных к пассивации, таких как алюминий, титан, хром, никель, тантал и др. Пассивностью металла называют состояние повышенной коррозионной устойчивости, вызываемое торможением анодного процесса. Пассивация обычно обусловлена образованием на поверхности металла защитных пленок.
Поверхность металла можно защитить покрытиями, которые бывают нескольких видов:
неметаллические покрытия (лаки, краски, эмали);
покрытия, образующиеся в результате химической обработки поверхности металла (например, воронение стали);
металлические покрытия, которые подразделяются на анодные (покрытие более активным металлом, образующим устойчивые к коррозии оксидные пленки) и катодные (покрытие менее активным металлом).
При повреждении анодного покрытия будет анодно растворяться само покрытие, а не основной металл. При повреждении катодного покрытия растворяется основной металл, а не металл покрытия.
В некоторых случаях в коррозионную среду вводят ингибиторы (замедлители) коррозии.
Электрохимическая защита применяется в средах с хорошей ионной проводимостью, например, морская вода, почва. Существует несколько видов электрохимической защиты:
протекторная защита – присоединение к защищаемому изделию большого листа из более активного металла, который выступает в качестве анода и окисляется, материал изделия выступает в роли катода, он защищен от коррозии;
катодная защита – защищаемая деталь присоединяется к отрицательному полюсу внешнего источника тока и становится катодом, в качестве анода используются куски железа, которые присоединяются к положительному полюсу источника тока, при этом подвергаясь анодному окислению;
анодная защита – защищаемое изделие подключается к положительному полюсу внешнего источника тока, при этом происходит пассивация защищаемого металла.