Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

ФТ_1 / oborudovanie_k_lk_9

.doc
Скачиваний:
45
Добавлен:
18.03.2016
Размер:
76.8 Кб
Скачать

Аквадистилляторы

Наиболее часто в промышленном производстве применяют многоступенчатые. Они имеют три и более корпусов, расположенных вертикально или горизонтально (рис. 13.11). Каждый корпус (1) представляет собой испаритель с трубчатым паровым нагревателем (5). Технический греющий пар подается в его верхнюю часть, а отработанный выводится в нижней части в парозапорное устройство линии конденсата технического пара. Внутрь испарителя заливается нагретая в конденсаторе-холодильнике (2) вода деминерализованная до постоянного уровня и нагревается до кипения. Вторичный пар в верхней части каждого корпуса проходит через ситчатую тарелку с постоянным слоем проточной воды апирогенной (4). Барботаж способствует эффективному задерживанию капель из пара. Очищенный пар поступает в нагреватель второго корпуса и нагревает воду, находящуюся в нем, до кипения. Вторичный пар второго корпуса барботирует через слой воды апирогенной в ситчатой тарелке и поступает в нагреватель третьего. Очищенный вторичный пар третьего корпуса поступает в конденсатор-холодильник (2), являющийся общим для всех корпусов. Вторичный пар первого и второго корпусов из соответствующих нагревателей, проходя подпорные шайбы, подается вместе с образовавшимся дистиллятом в конденсатор-холодильник. Дистиллят собирается в сборнике с воздушным фильтром. Восполнение воды в испарителях всех корпусов происходит нагретой водой из конденсатора-холодильника. Для последовательного нагревания воды до кипения в нагревателях корпусов автоматически с помощью подпорных шайб поддерживается соответствующее давление и температура пара. В испарителях первого корпуса – 120-140 °С, второго – 110-120 °С и третьего – 103-110 °С. Качество дистиллята хорошее, так как в корпусах достаточная высота парового пространства и предусмотрено эффективное удаление капельной фазы из пара.

Термокомпрессионный аквадистиллятор отличается тем, что питание аппарата осуществляется водой деминерализованной (рис. 13.12), которая подается в регулятор давления (4) и через регулятор уровня поступает в нижнюю часть конденсатора-холодильника (1), заполняет его межтрубное пространство, направляется в камеру предварительного нагрева (5), а из нее ‑ в трубки испарителя (6). Здесь предварительно нагретая вода доводится до кипения и образующийся пар откачивается из парового пространства (2) компрессором (3). В камере испарения создается небольшое разрежение 0,88 атм. и закипание воды в трубках — при температуре 96 °С. Вторичный пар в компрессоре сжимается, его температура повышается до 103-120 °С. Как греющий, он проходит в межтрубное пространство испарителя и нагревает воду в трубках до кипения. В межтрубном пространстве образуется конденсат, который направляется в верхнюю часть конденсатора-холодильника, охлаждается и собирается в сборнике дистиллята. Качество воды апирогенной, получаемой в этом аппарате, высокое, так как капельная фаза испаряется на стенках трубок. Нагревание и кипение в трубках испарителя происходит в тонком слое, равномерно и без перебросов. Задерживанию капель из пара способствует также высота парового пространства. Недостатками являются сложность устройства и эксплуатации.

Аквадистиллятор «Финн-аква» (Финляндия) — трехкорпусный (рис. 13.13). Исходная вода деминерализованная подается через регулятор давления (1) в конденсатор-холодильник (2), проходит теплообменники камер предварительного нагрева (3) — III, II и I корпусов, нагревается и поступает в зону испарения (5), в которой размещены системы трубок, обогреваемых изнутри греющим паром. Нагретая вода с помощью распределительного устройства направляется на наружную поверхность обогреваемых трубок в виде пленки, стекает по ним вниз и нагревается до кипения.

Поверхность кипящих пленок воды очень большая, поэтому в испарителе создается интенсивный поток пара, специальными направляющими ему задается спиралеобразное вращательное движение снизу вверх с большой скоростью — 20-60 м/с. Центробежная сила, возникающая при этом, прижимает капли к стенкам и они стекают в нижнюю часть корпуса. Очищенный вторичный пар направляется в камеру предварительного нагрева и трубки нагревателя II корпуса.

I корпус обогревается техническим паром, который поступает в камеру предварительного нагрева, затем в трубки испарителя и выводится через парозапорное устройство в линию технического конденсата (4). Избыток питающей воды через трубу (6) из нижней части I и II корпусов подается в испарители, где вода также в виде пленки стекает по наружной по­верхности (обогреваемых внутри трубок) по трубе (7) в конденсатор-холодильник в качестве целевого дистиллята. В III корпус питающая вода поступает из нижней части корпуса II. Конденсат внутри трубок III корпуса также передается по трубе (7) в конденсатор-холодильник. Обогрев зоны предварительного нагрева и трубчатых испарителей II и III корпусов осуществляется соответственно вторичным паром I и II корпусов. Вторичный очищенный пар из III корпуса по трубе (8) поступает непосредственно в хо­лодильник и конденсируется. Объединенный конденсат из холодильника проходит специальный теплообменник (9), где поддерживается температура от 80 до 95 °С. На выходе из него в дистилляте постоянно замеряется удельная электропроводность и, если вода оказывается недостаточного качества по этому показателю, она тотчас отбрасывается в канализационный слив. Основной поток получаемой воды апирогенной поступает в специальную систему сбора и хранения.

Получение воды деминерализованной.

Ионообменная установка состоит из 3-5 пар катионитовых и анионитовых колонок. Непрерывность действия обеспечивается тем, что одна их часть находится в работе, другая — на регенерации. Водопроводная вода поступает в катионитовую колонку (рис. 13.14), проходит через слой катионита в Н-, затем в ОН-форме, подается на фильтр, задерживающий частицы разрушения ионообменных смол с размером пор не более 5-10 мкм, и нагревается в тепло­обменнике до температуры 80-90 °С. Насыщение ионообменников определяют по изменению реакции среды с помощью рН-метра. Перед регенерацией иониты взрыхляют обратным током водопроводной воды. Катиониты регенерируют в несколько приемов 1, 0,7 и 4 % раствором кислоты серной. Перед сливом в канализацию кислоту из колонки нейтрализуют мраморной крошкой. Аниониты восстанавливаются в три приема: 2,6; 1,6 и 0,8% раствором натрия гидроксида. После обработки растворами реагентов колонки промывают водой до заданного значения рН. Деминерализованная вода используется для мойки дрота, ампул, вспомогательных материалов и питания аквадистилляторов.

Обратный осмос (гиперфильтрация).

Для разделения применяют мембраны двух типов:

1. пористые — с размером пор 10~4—10~3 мкм (1 —10 А).

Выпускаются ультрафильтрационные ацетатцеллюлозные мембраны — УАМ 50м, диаметр пор менее 50 А, и др.;

2. непористые диффузионные мембраны. Выпускаются гиперфильтрационные ацетатцеллюлозные мембраны МГА-80, МГА-100 и др. (цифры в марке означают % селиктивнocти — S).

Соседние файлы в папке ФТ_1