- •Амины: классификация, номенклатура; химическая идентификация, спектральные характеристики. Представители: анилин, n–метиланилин, n,n–диметиланилин, толуидины, фенетидины, дифениламин.
- •Амины: реакции первичных, вторичных и третичных алифатических и ароматических аминов с азотистой кислотой; карбиламинная реакция (изонитрильная проба).
- •Ароматические амины: влияние аминогруппы на реакционную способность ароматического ядра; реакции галогенирования, сульфирования, нитрования. Защита аминогруппы.
- •Диазосоединения: номенклатура; реакция диазотирования (вопр. 29), механизм и условия проведения; строение солей диазония; влияние рН среды на устойчивость солей диазония.
- •Диазосоединения: реакции солей диазония с выделением азота, синтетические возможности реакций.
- •Диазосоединения: реакции без выделения азота; реакция азосочетания, ее механизм, диазо– и азосоставляющие; использование реакции азосочетания для идентификации фенолов и ароматических аминов.
- •Азосоединения: азокрасители (метиловый оранжевый), индикаторные свойства; основы теории цветности.
- •Альдегиды и кетоны: факторы, определяющие реакционную способность; реакции присоединения воды и спиртов, механизм, роль кислотного катализа в образовании ацеталей и полуацеталей.
- •Альдегиды и кетоны: механизм аn; присоединение гидросульфита натрия, циановодорода, магнийорганических соединений, значение этих реакций.
- •Альдегиды и кетоны: реакции присоединения-отщепления – образование иминов, оксимов, гидразонов, семикарбазонов, использование этих реакций для идентификации оксосоединений.
- •Альдегиды и кетоны: реакции восстановления – гидридами и комплексными гидридами, восстановление по Кижнеру–Вольфу и Клемменсену; реакции окисления альдегидов катионами серебра (I) и меди (II).
- •Карбоновые кислоты: кислотные свойства, строение карбоксилат-аниона; сравнительная характеристика кислотных свойств алифатических и ароматических моно- и дикарбоновых кислот; образование солей.
- •Карбоновые кислоты: реакции нуклеофильного замещения, механизм; образование функциональных производных.
- •Сложные эфиры: номенклатура, кислотный и щелочной гидролиз, аммонолиз; идентификация.
- •Дикарбоновые кислоты: специфические свойства. Представители: щавелевая, малоновая, янтарная, глутаровая, фталевая кислоты.
- •Фталевая кислота, фталевый ангидрид, фталимид; синтез фенолфталеина, его индикаторные свойства.
- •Аминокислоты: номенклатура, химические свойства как гетерофункциональных соединений; специфические реакции –, β–, –аминокислот; лактамы, дикетопиперазины, отношение к гидролизу.
- •Пептиды и белки: первичная структура, строение (электронное, пространственное) пептидной группы, частичный и полный гидролиз.
- •Кето-енольная таутомерия β – дикарбонильных соединений (ацетилацетон, ацетоуксусный эфир, щавелевоуксусная кислота). Реакции кетонной и енольной форм ацетоуксусного эфира.
- •Ацетоуксусный эфир: строение, таутомерия; синтез карбоновых кислот и кетонов.
- •Сульфаниловая кислота: строение, биполярная структура; реакция диазотирования (вопр. 29); сульфаниламид (стрептоцид), общий принцип строения сульфаниламидных лекарственных препаратов.
-
Диазосоединения: реакции солей диазония с выделением азота, синтетические возможности реакций.
Ароматические диазосоединения.
Реакции солей арилдиазония с выделением азота.
Реакции, в результате которых диазогруппа замещается другими группировками, имеют большое синтетическое применение, поскольку позволяют в довольно мягких условиях ввести в ароматическое кольцо те функциональные группы, введение которых иными способами было бы сопряжено со значительными трудностями или просто неосуществимо. Кроме того, с помощью этих реакций можно получать производные ароматических углеводородов с таким взаимным расположением функций, которого нельзя достичь, используя непосредственно реакции электрофильного замещения. Реакции с выделением азота могут протекать по ионному или радикальному механизмам.
Замена диазогруппы на гидроксильную группу. При нагревании водных растворов арилдиазониевых солей, даже до комнатной температуры, происходит выделение азота и образуются соответствующие фенолы. Во многих случаях выходы в этой реакции высокие, поэтому она может служить препаративным способом получения фенолов. Во избежание замены диазогруппы другими нуклеофилами реакцию обычно проводят с использованием серной кислоты, анионы которой обладают низкой нуклеофильностью:

Реакция протекает по механизму мономолекулярного арильного нуклеофильного замещения SN1Ar который в основном характерен именно для солей диазония. На первой, медленной, стадии катион диазония обратимо диссоциирует с образованием арил-катиона (в частности, фенил-катиона) и молекулы азота. На второй стадии крайне неустойчивый арил-катион быстро соединяется с нуклеофилом. Неустойчивость арил-катиона обусловлена невозможностью участия π-электронов ароматического кольца в делокализации положительного заряда, так как p-орбитали кольца не могут взаимодействовать с расположенной в плоскости σ-скелета вакантной sp2-гибридной орбиталью:

Замена диазогруппы на фтор. При нагревании сухих борофторидов арилдиазония образуются арилфториды (реакциея Шимана):
![]()
Эта реакция — один из лучших способов введения фтора в ароматическое кольцо. Полагают, что она протекает по ионному механизму с образованием промежуточного арил-катиона:

Замена диазогруппы на иод. При добавлении к растворам солей арилдиазония растворимой соли иодоводородной кислоты образуются соответствующие арилиодиды. Например, из п-фенилендиамина практически с количественным выходом получают п-дииодобензол, который другими методами получить довольно трудно:

Замена диазогруппы на хлор или бром. Для получения хлоро- или бромопроизводных соли диазония нагревают в присутствии солей меди(I) — CuCl или СиВr соответственно:

Обе реакции протекают по радикальному механизму. Ион Сu+ легко окисляется в ион Сu2+, отдавая один электрон катиону диазония. Последний превращается при этом в свободный радикал (I), который отщепляет молекулу азота, образуя арил-радикал (II). При последующем взаимодействии арил-радикала (II) с галогенид-ионом образуется конечный арилгалогенид. Отщепившийся на последней стадии электрон затрачивается на восстановление иона Сu2+, за счет чего происходит регенерация катализатора.
![]()
Замена диазогруппы на цианогруппу. При обработке растворов ароматических солей диазония цианидом меди образуются арилнитрилы (арилцианиды):

Замена диазогруппы на нитрогруппу. Реакцию проводят, добавляя твердый борофторид арилдиазония к раствору нитрита натрия, в котором суспендирован медный порошок. Этот способ позволяет ввести нитрогруппу в такие положения ароматического кольца, которые недоступны для прямого нитрования, например:

Замена диазогруппы на водород. При действии на соли арилдиазония такого восстановителя, как фосфорноватистая кислота Н3РO2, происходит замещение диазогруппы на атом водорода. В качестве примера приведена схема получения 2,4,6-трибромобензойной кислоты, которую невозможно получить прямым бромированием бензойной кислоты:

Замена диазогруппы на металл. Из солей диазония можно получить органические соединения некоторых металлов. Например, при восстановлении медью двойных ртутных солей получаются ртутьорганические соединения (реакция Несмеянова):

