- •1. Исходные материалы для металлургии: руда, флюсы, огнеупоры, топливо; пути повышения температуры горения металлургического топлива. Дайте определения и примеры химических формул.
- •2. Сущность процессов шлакования; роль шлаков и флюсов в металлургии (на примере доменной плавки).
- •3. Окислительно-восстановительные реакции в металлургии (на примере производства чугуна и стали).
- •4. Сущность доменного процесса; исходные материалы для получения чугуна, продукты доменной плавки, оценка эффективности работы доменной печи. Схема и принцип работы доменной печи.
- •5. Сталь. Сущность процесса получения стали методом прямого восстановления железа из руды. Приведите примеры восстановительных химических реакций при прямом восстановлении железа из руды.
- •6.Сущность процесса передела чугуна на сталь. Сравнительная характеристика основных способов производства стали: в конвертерах, в мартенах, электропечах.
- •7.Кислородно-конверторный способ получения стали: исходные материалы, технология, технико-экономические показатели. Схема кислородного конвертера.
- •8. Мартеновский способ получения стали: исходные материалы, технология, технико-экономические показатели. Схема мартеновской печи.
- •9. Плавка стали в электропечах: сущность процесса, исходные материалы, преимущества, область использования. Схема электропечи для выплавки стали.
- •11. Разливка стали, разливка в изложницы, непрерывная разливка, строение стального слитка. Схемы разливки в изложницу, схема непрерывной разливки стали, схемы слитков спокойной и кипящей стали.
- •12. Классификация отливок и способов литья по масштабу производства и технологическому признаку (примеры литья в разовые и постоянные формы).
- •13. Литейные свойства сплавов: жидкотекучесть, усадка , смачиваемость, газопоглощение, химическая активность, ликвация. Сравнение литейных свойств стали и чугуна.
- •14. Основные литейные сплавы: чугуны, силумины, бронзы, стали; связь их литейных свойств с технологией изготовления и качество литейной продукции.
- •15. Литье в песчаные формы: конструкция формы, литейная оснастка, формовочные материалы, область применения. Преимущества и недостатки литья в песчаные формы.
- •16. Литьё в оболочковые формы: исходные материалы, технология изготовления оболочки, область применения способа. Схема получения отливки. Преимущества и недостатки литья в оболочковые формы.
- •18.Литьё в кокиль: требования к кокилю и отливкам, облицованные кокили; область использования процесса. Принципиальная схема кокиля. Преимущества и недостатки пресса.
- •19. Литьё под давлением: сущность процесса, область использования. Принципиальная схема формы для литья под давлением. Преимущества и недостатки процесса.
- •20. Центробежное литьё: сущность процесса, область использования, преимущества и недостатки. Принципиальная схема центробежного литья.
- •21. Характеристика основных способов получения машиностроительных профилей; их сравнительная характеристика (прокатка, прессование, волочение). Принципиальные схемы указанных процессов.
- •22. Понятие о горячей и холодной обработке металлов давлением. Наклеп и рекристаллизация. Изменение механических свойств при наклепе и при последующем нагреве.
- •23.Пластичность металлов, влияние на пластичность химического состава, температуры нагрева, схемы напряженного состояния, скорость деформации.
- •24.Основные законы обработки давлением: постоянства объема наименьшего сопротивления, подобия; использование их в практике.
- •26.Прокатка металла
- •27. Ковка. Обл использования.
- •Вопрос 29.
- •Вопрос 30.
- •31. Ручная дуговая сварка: принципиальная схема, источники тока, сварочные материалы, режимы сварки. Приведите примеры: марки электродной проволоки, марка электрода, тип электрода.
- •32. Дуговая сварка в углекислом газе: принципиальная схема, источники сварочного тока, сварочные материалы, режимы сварки, область применения.
- •33. Аргонодуговая сварка: принципиальные схемы и разновидности, область использования.
- •34 . Автоматическая и механизированная сварка под флюсом: Принципиальные схемы, сварочные материалы, преимущества процесса и область применения.
- •36. Металлургические процессы при сварке: диссоциация веществ, насыщение металла o, n, h, процессы раскисления, шлакования, рафинирования металла сварного шва.
- •37 . Сварочные материалы.
- •38. Тепловые процессы
- •39 . Контактная сварка
- •40. Сущность процесса и материалы для пайки
- •45. Силы резания
- •49)Основные конструктивные части металлорежущих инструментов. Основные поверхности и кромки токарного резца.
- •50. Определение углов токарного резца в статической системе координат, их назначение и влияние на процесс резания.
- •51. Инструментальные материалы: инструментальные стали, твердые сплавы, режущая керамика, сверхтвердые инструментальные материалы. Их назначение и обозначение.
- •Инструментальные стали
- •Металлокерамические твердые сплавы
- •Твердые сплавы с покрытием
- •Стойкость металлорежущих инструментов
- •Допустимая скорость резания металлов
- •55. Общее устройство основных составных частей универсальных металлорежущих станков: несущих систем, приводов движений, рабочих органов и вспомогательных систем. Основные составные части
- •Несущие системы мс
- •Приводы главного движения (пгд)
- •Исполнительные механизмы
- •Вспомогательные системы
- •57. Кинемат характ приводов станка
- •61. Параметры режима резания на токарных станках и последовательность определения их рационального сочетания.
- •65. Сверление. Основные типы сверлильных станков и их назначение. Параметры режима резания при сверлении (V, s, t, to) и последовательность их рационального сочетания.
- •66. Параметры режима резания на фрезерных станках и последовательность определения их рационального.
- •71 Отделочная обработка зубьев зубчатых колес
- •73. Характеристика метода шлифования
- •74 Абразивно-жидкостная отделка
- •75 Чистовая обработка пластическим деформированием
33. Аргонодуговая сварка: принципиальные схемы и разновидности, область использования.
Аргонодуговой сваркой можно сваривать неплавящимся и плавящимся электродами. Сварку неплавящимся электродом применяют, как правило, при соединении металла толщиной 0,5—б мм; плавящимся электродом — от 1,5 мм и более. В аргоне неплавящимся вольфрамовым электродом (ГЕЛ = 3370 °С) можно сваривать с расплавлением только основного металла (толщиной до 3 мм), а при необходимости получения усиления шва или заполнения разделки кромок (толщина более 3 мм) — и присадочного материала (прутка или проволоки). Последний подают в дугу вручную (рис. 5.11, а) или механизмом подачи (рис. 5.11,6).

/ — присадочный пруток или проволока; 2 — сопло; 3 — токоподводящий мундштук; 4 — корпус горелки; 5 — неплавящийся вольфрамовый электрод; 6 — рукоять горелки; 7 — атмосфера защитного газа; 8 — сварочная Дуга; 9 —• ванна расплавленного металла; 10 — кассета с проволокой; // — механизм подачи; 12 •— плавящийся металлический электрод (сварочная проволока)
Сварку в аргоне плавящимся электродом выполняют по схеме, приведенной на рис. 5,11,6, г. Нормальное протекание процесса сварки и хорошее качество шва обеспечиваются при высокой плотности тока (100 А/мм2 и более). При невысокой плотности тока имеет место крупнокапельный перенос расплавленного металла с электрода в сварочную ванну, приводящий к пористости шва, сильному разбрызгиванию расплавленного металла и малому проплавлению основного металла. При высоких плотностях тока перенос расплавленного металла с электрода становится мелкокапельным или струйным. В условиях действия значительных электромагнитных сил быстродвижущиеся мелкие капли сливаются в сплошную струю. Такой перенос электродного металла обеспечивает глубокое проплавление основного металла, формирование плотного шва с ровной и чистой поверхностью и разбрызгивание в допустимых пределах.
В соответствии с необходимостью применения высоких плотностей тока для сварки плавящимся электродом используют проволоку малого диаметра (0,6—3 мм) и большую скорость ее подачи. Такой режим сварки обеспечивается только механизированной подачей проволоки в зону сварки. Сварку выполняют на постоянном токе обратной полярности. В данном случае электрические свойства дуги в значительной степени определяются наличием ионизированных атомов металла электрода в столбе дуги. Поэтому дуга обратной полярности горит устойчиво и обеспечивает нормальное формирование шва, в то же время ей соответствуют повышенная скорость расплавления проволоки и производительность процесса сварки.
Сварку сталей часто выполняют в смеси Аг + 5 % О2. Кислород уменьшает поверхностное натяжение расплавленного металла, что способствует снижению критической плотности тока, при которой капельный перенос металла переходит в струйный. Одновременно повышается устойчивость горения дуги при относительно небольших токах, что облегчает сварку металла малой толщины.
