Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

химия, инфор.нач.-геом. / химия1к / гальванические элементы

.doc
Скачиваний:
72
Добавлен:
18.03.2016
Размер:
118.27 Кб
Скачать

Министерство образования и науки Российской Федерации

Национальный исследовательский ядерный университет «МИФИ»

Балаковский инженерно-технологический институт

ГАЛЬВАНИЧЕСКИЕ ЭЛЕМЕНТЫ

Методические указания

к выполнению лабораторной работы

по курсу « Химия»

для студентов технических направлений и специальностей,

«Общая и неорганическая химия»

для студентов направления «Химическая технология»

всех форм обучения

Балаково 2014

Цель работы: изучить принцип работы гальванических элементов.

ОСНОВНЫЕ ПОНЯТИЯ

ЭЛЕКТРОХИМИЧЕСКИЕ ПРОЦЕССЫ НА ГРАНИЦЕ РАЗДЕЛА ФАЗ

В узлах кристаллических решеток металлов расположены ионы атомов. При погружении металла в раствор начинается сложное взаимодействие поверхностных ионов металла с полярными молекулами растворителя. В результате происходит окисление металла, и его гидратированные (сольватированные) ионы переходят в раствор, оставляя в металле электроны:

Ме + m H2O Me(H2O)+ ne-

Металл заряжается отрицательно, а раствор - положительно. Возникает электростатическое притяжение между перешедшими в жидкость гидратированными катионами и поверхностью металла и на границе металл-раствор образуется двойной электрический слой, характеризующийся определенной разностью потенциалов - электродным потенциалом.

Рис. 1 Двойной электрический слой на границе раздела металл - раствор

Наряду с этой реакцией протекает обратная реакция - восстановление ионов металла до атомов.

Me(H2O)+ ne Ме + m H2O -

При некотором значении электродного потенциала устанавливается равновесие:

Ме + m H2O Me(H2O)+ ne-

Для упрощения воду в уравнение реакции не включают:

Ме Me2+ + ne-

Потенциал, устанавливающийся в условиях равновесия электродной реакции, называется равновесным электродным потенциалом.

ГАЛЬВАНИЧЕСКИЕ ЭЛЕМЕНТЫ

Гальванические элементы – химические источники электрической энергии. Они представляют собой системы, состоящие из двух электродов (проводников I рода), погруженных в растворы электролитов (проводников II рода).

Электрическая энергия в гальванических элементах получается за счет окислительно-восстановительного процесса при условии раздельного проведения реакции окисления на одном электроде и реакции восстановления на другом. Например, при погружении цинка в раствор сульфата меди цинк окисляется, а медь восстанавливается

Zn + CuSO4 = Cu + ZnSO4

Zn0 + Cu2+ = Cu0 + Zn2+

Можно провести эту реакцию так, чтобы процессы окисления и восстановления были пространственно разделены; тогда переход электронов от восстановителя к окислителю будет происходить не непосредственно, а через электрическую цепь. На рис. 2 представлена схема гальванического элемента Даниэля-Якоби, электроды погружены в растворы солей и находятся в состоянии электрического равновесия с растворами. Цинк, как более активный металл, посылает в раствор больше ионов, чем медь, в результате чего цинковый электрод за счет остающихся на нем электронов заряжается более отрицательно, чем медный. Растворы разделены перегородкой, проницаемой только для ионов, находящихся в электрическом поле. Если электроды соединить между собой проводником (медной проволокой), то электроны с цинкового электрода, где их больше, будут по внешней цепи перетекать на медный. Возникает непрерывный поток электронов - электрический ток. В результате ухода электронов с цинкового электрода Zn цинк начинает переходить в раствор в виде ионов, восполняя убыль электронов и стремясь тем самым восстановить равновесие.

Электрод, на котором протекает окисление, называется анодом. Электрод, на котором протекает восстановление, называется катодом.

Cu

Zn

Г

Cu

Zn

Г

Анод (-) Катод (+)

ZnSO4

CuSO4

Рис. 2. Схема гальванического элемента

При работе медно-цинкового элемента протекают следующие процессы:

1) анодный – процесс окисления цинка Zn0 – 2e → Zn2+;

2) катодный – процесс восстановления ионов меди Cu2+ + 2e → Cu0;

3) движение электронов по внешней цепи;

4) движение ионов в растворе.

В левом стакане - недостаток анионов SO42-, а в правом – избыток. Поэтому во внутренней цепи работающего гальванического элемента наблюдается перемещение ионов SO42- из правого стакана в левый через мембрану.

Суммируя электродные реакции, получаем:

Zn + Cu2+ = Cu + Zn2+

На электродах протекают реакции:

Zn + SO42- → Zn2+ + SO42- + 2e (анод )

Cu2+ + 2e + SO42- → Cu + SO42- ( катод )

Zn + CuSO4 → Cu + ZnSO4 (суммарная реакция)

Схема гальванического элемента: ( - ) Zn / ZnSO4 | | CuSO4 / Cu ( + )

или в ионном виде: (-) Zn / Zn2+ | | Cu2+/Cu (+), где вертикальная черта обозначает поверхность раздела между металлом и раствором, а две черты - границу раздела двух жидких фаз - пористую перегородку (или соединительную трубку, заполненную раствором электролита).

Максимальная электрическая работа (W) при превращении одного моля вещества:

W = n F E, (1)

где ∆E - ЭДС гальванического элемента;

F - число Фарадея, равное 96500 Кл;

n - заряд иона металла.

Электродвижущая сила гальванического элемента, может быть рассчитана как разность потенциалов электродов, составляющих гальванический элемент:

ЭДС= Еокис. – Евосст= Ек – Еа,

где ЭДС- электродвижущая сила;

Еокисл. – электродный потенциал менее активного металла;

Евосст - электродный потенциал более активного металла.

СТАНДАРТНЫЕ ЭЛЕКТРОДНЫЕ ПОТЕНЦИАЛЫ МЕТАЛЛОВ

Абсолютные значения электродных потенциалов металлов непосредственно определить невозможно, но можно определить разность электродных потенциалов. Для этого находят разность потенциалов измеряемого электрода и электрода, потенциал которого известен. Наиболее часто в качестве электрода сравнения принято использовать водородный электрод. Поэтому измеряют ЭДС гальванического элемента, составленного из исследуемого и стандартного водородного электрода, электродный потенциал которого принимают равным нулю. Схемы гальванических элементов для измерения потенциала металла таковы:

Н2, Pt| H+|| Мen+| Me

Т. к. потенциал водородного электрода, условно равен нулю, то ЭДС измеряемого элемента будет равна электродному потенциалу металла.

Стандартным электродным потенциалом металла называют его электродный потенциал, возникающий при погружении металла в раствор собственного иона с концентрацией (или активностью) , равной 1 моль/л, при стандартных условиях, измеренный по сравнению со стандартным водородным электродом, потенциал которого при 250 С условно принимается равным нулю. Располагая металлы в ряд по мере возрастания их стандартных электродных потенциалов (Е°), получаем так называемый ряд напряжений.

Чем более отрицательное значение имеет потенциал системы Ме/Меn+, тем активнее металл.

Электродный потенциал металла, опущенного в раствор собственной соли при комнатной температуре, зависит от концентрации одноименных ионов и определяется по формуле Нернста:

, (2)

где E0 – нормальный (стандартный) потенциал, В;

R – универсальная газовая постоянная, равная 8,31Дж(моль.К);

F – число Фарадея;

Т - абсолютная температура, К;

С - концентрация ионов металла в растворе, моль/л.

Подставляя значения R, F, стандартное температуры Т=2980К и множитель перехода от натуральных логарифмов (2,303)к десятичным, получают удобную для применения формулу:

(3)

КОНЦЕНТРАЦИОННЫЕ ГАЛЬВАНИЧЕСКИЕ ЭЛЕМЕНТЫ

Гальванические элементы могут быть составлены из двух совершенно одинаковых по природе электродов, погруженных в растворы одного и того же электролита, но различной концентрации. Такие элементы называются концентрационными, например:

( - ) Ag | AgNO3|| AgNO3 | Ag (+)

C1 < C2

В концентрационных цепях для обоих электродов величины n и E0 одинаковы, поэтому для расчета ЭДС такого элемента можно использовать

формулу:

, (4)

где С1– концентрация электролита в более разбавленном растворе;

С2 - концентрация электролита в более концентрированном растворе

ПОЛЯРИЗАЦИЯ ЭЛЕКТРОДОВ

Равновесные потенциалы электродов могут быть определены в условиях отсутствия в цепи тока. Поляризация - изменение потенциала электрода при прохождении электрического тока.

Е = Еi - Еp , (5)

где Е - поляризация;

Еi - потенциал электрода при прохождении электрического тока;

Еp - равновесный потенциал. Поляризация может быть катодной Е К ( на катоде) и анодной Е A ( на аноде).

Поляризация может быть:1) электрохимическая; 2) химическая.

ТРЕБОВАНИЯ БЕЗОПАСНОСТИ ТРУДА

1. Опыты с неприятно пахнущими и ядовитыми веществами проводятся обязательно в вытяжном шкафу.

2. При распознавании выделяющегося газа по запаху следует направлять струю движениями руки от сосуда к себе.

3. Выполняя опыт, необходимо следить за тем, чтобы реактивы не попали на лицо, одежду и рядом стоящего товарища.

4. При нагревании жидкости, особенно кислот и щелочей, держать пробирку отверстием в сторону от себя.

5. При разбавлении серной кислоты нельзя приливать воду к кислоте, следует вливать кислоту осторожно, небольшими порциями в холодную воду, перемешивая раствор.

6. По окончании работы следует тщательно вымыть руки.

7. Отработанные растворы кислот и щелочей рекомендуется сливать в специально приготовленную посуду.

8. Все склянки с реактивами необходимо закрывать соответствующими пробками.

9. Оставшиеся после работы реактивы не следует выливать или высыпать в реактивные склянки (во избежание загрязнения).

Порядок выполнения работы

Задание 1

ИССЛЕДОВАНИЕ АКТИВНОСТИ МЕТАЛЛОВ

Приборы и реактивы: цинк, гранулированный; сульфат меди CuSO4, 0,1 н раствор; пробирки.

Кусочек гранулированного цинка опустите в 0,1 н раствор сульфата меди. Оставьте стоять спокойно в штативе и наблюдайте происходящее. Составьте уравнение реакции. Сделайте вывод, какой металл можно взять в качестве анода и какой - в качестве катода для следующего опыта.

Задание 2

ГАЛЬВАНИЧЕСКИЙ ЭЛЕМЕНТ

Приборы и реактивы: Zn, Cu –металлы; сульфат цинка,ZnSO4, 1 М раствор; сульфат меди CuSO4, 1 М раствор; хлорид калия КCl, концентрированный раствор; гальванометр; стаканы; U- образная трубка, вата.

В один стакан налейте до ¾ объема 1М раствора соли металла, являющегося анодом, а в другой - такой же объем 1 М раствора соли металла, являющегося катодом. Заполните U- образную трубку концентрированным раствором КCl. Концы трубки закройте плотными кусочками ваты и опустите в оба стакана так, чтобы они погрузились в приготовленные растворы. В один стакан опустите пластинку металл- анод, в другую- пластинку металл- катод; смонтируйте гальванический элемент с гальванометром . Замкните цепь и отметьте по гальванометру направление тока.

Составьте схему гальванического элемента.

Напишите электронные уравнения реакций, протекающих на аноде и катоде данного гальванического элемента. Вычислите ЭДС.

Задание 3

ОПРЕДЕЛЕНИЕ АНОДА ИЗ УКАЗАННОГО НАБОРА ПЛАСТИНОК

Приборы и реактивы: Zn, Cu, Fe, Al –металлы; сульфат цинка,ZnSO4, 1 М раствор; сульфат меди CuSO4, 1 М раствор; сульфат алюминия Al2(SO4)3 1 М раствор; сульфат железа FeSO4, 1 М раствор; хлорид калия КCl, концентрированный раствор; стаканы; U- образная трубка, вата.

Составьте гальванические пары:

Zn / ZnSO4 || FeSO4 / Fe

Zn / ZnSO4 || CuSO4/ Cu

Al/Al2(SO4)3 || ZnSO4 /Zn

Из указанного набора пластинок и растворов солей этих металлов соберите гальванический элемент, в котором цинк являлся бы катодом (задание 2).

Составьте электронные уравнения реакций, протекающих на аноде и катоде собранного гальванического элемента.

Напишите окислительно-восстановительную реакцию, которая лежит в основе работы данного гальванического элемента. Вычислите ЭДС.

ОФОРМЛЕНИЕ ОТЧЕТА

Лабораторный журнал заполняется в ходе лабораторных занятий по мере выполнения работы и содержит:

дату выполнения работы;

название лабораторной работы и ее номер;

название опыта и цель его проведения;

наблюдения, уравнения реакций, схему прибора;

выводы;

контрольные вопросы и задачи по теме.

КОНТРОЛЬНЫЕ ЗАДАНИЯ

1.Какие из указанных ниже реакций возможны? Написать уравнения реакций в молекулярном виде, составить для них электронные уравнения:

Zn(NO3)2 + Cu →

Zn(NO3)2 + Mg →

FeSO4 +Zn →

AlCl3 + Ag→

2. Составьте схемы гальванических элементов для определения нормальных электродных потенциалов Al/Al3+, Cu/Cu2+ в паре с нормальным водородным электродом.

3. Вычислите ЭДС гальванического элемента

Zn/ZnSO4(1M)| | CuSO4(2M)

Какие химические процессы протекают при работе этого элемента?

4. Химически чистый цинк почти не реагирует с соляной кислотой. При добавлении к кислоте нитрата свинца происходит частичное выделение водорода. Объясните эти явления. Составьте уравнения происходящих реакций.

5. Медь находится в контакте с никелем и опущена в разбавленный раствор серной кислоты, какой процесс происходит на аноде?

6. Составьте схему гальванического элемента, в основе которого лежит реакция, протекающая по уравнению: Ni + Pb(NO3)2= Ni(NO3)2+Pb

7. Марганцевый электрод в растворе его соли имеет потенциал 1,2313 В. Вычислите концентрацию ионов Mn2+ в моль/л.

Время, отведенное на лабораторную работу

Подготовка к работе

0,5 акад.ч.

Выполнение работы

2,0 акад.ч.

Обработка результатов эксперимента и оформление отчета

0,5 акад.ч.

Литература

Основная

1. Глинка. Н.А. Общая химия: учеб. пособие для вузов. – М.:Интеграл – Пресс, 2005. – 728 с.

2. Коржуков Н. Г. Общая и неорганическая химия. – М.: МИСИС;

ИНФРА–М, 2004. – 512 с.

Дополнительная

3.Фролов В.В. Химия: учеб. пособие для втузов. – М.: Высш. шк., 2002. –

527 с.

4. Коровин Н.В.. Общая химия: учебник для техн. направл. и спец. вузов. – М.: Высш. шк., 2002. – 559с.: ил..

4. Ахматов Н.С. Общая и неорганическая химия: учебник для вузов. – 4-е изд., исправл.- М.: Высш. шк., 2002. –743 с.

5. Глинка Н.А. Задания и упражнения по общей химии. – М.: Интеграл –Пресс, 2001. – 240 с.

6. Метельский А. В. Химия в вопросах и ответах: справочник. – Мн.: Бел.Эн., 2003. – 544 с

гальванические элементы

Методические указания

к выполнению лабораторной работы

по курсу « Химия»

для студентов технических направлений и специальностей,

«Общая и неорганическая химия»

для студентов направления «Химическая технология»

всех форм обучения

Составили: Синицына Ирина Николаевна

Тимошина Нина Михайловна

13