
- •Эвм и вычислительные системы».
- •Часть I.
- •Лекция №1 общие сведения о микропроцессорах и микропроцессорных системах.
- •Предисловие
- •1.1 . Основные определения и классификация микропроцессорных систем.
- •1.2. Однокристальные мп.
- •1.2.1 Краткий исторический обзор развития.
- •Лекция №2 обзор микропроцессоров фирм клонмейкеров. Современный уровень развития однокристальных микропроцессоров.
- •2.1. Микропроцессоры-клоны.
- •2.2. Современные универсальные однокристальные микропроцессоры.
- •Процессоры Pentium II.
- •2.2.1. Процессоры фирмы amd
- •2.2.2.ПроцессорыфирмыCyrix.
- •2.2.3. Сравнительный анализ мп различных семейств.
- •2.2.4. Перспективы развития.
- •2.3. Программируемые микроконтроллеры.
- •Лекция №3 обзор микропроцессоров с микропрограммным управлением и микропроцессоров с сокращенным набором команд.
- •3.1. Мп с микропрограммным управлением.
- •3.2. Мп с сокращенным набором команд.
- •3.2.1. Risc-процессоры: предпосылки создания.
- •3.2.2. Принципы risc
- •3.2.3. Особенности risc-процессоров.
- •3.2.4. Представители группы risc-процессоров.
- •3.2.5. Цифровые процессоры обработки сигналов.
- •Лекция №4 представление информации в мпс.
- •4.1. Способы кодирования информации в мпс.
- •4.2 Двоичный формат.
- •4.3. Двоично-десятичная система кодирования.
- •4.4. Шестнадцатиричная система счисления.
- •4.4. Формат с плавающей точкой.
- •4.5. Кодирование команд.
- •Лекция №5 архитектура мп и мпс.
- •5.1. Понятие организации и архитектуры мп и мпс.
- •5.2 Обобщенная функциональная схема мп.
- •5.2.1 Устройство управления на основе аппаратной реализации.
- •5.2.2. Программируемая логическая матрица.
- •Лекция №6 архитектура мп и мпс.(продолжение)
- •6.1. Функциональная схема однокристального мп.
- •6.2 Структура адресного пространства мпс.
- •6.3 Взгляд программиста на адресное пространство.
- •6.4 Понятие стека.
- •Лекция №7 способы адресации
- •7.1 Основные определения.
- •7.2 Однокомпонентные способы адресации.
- •7.2.1 Прямой способ адресации.
- •7.2.3 Способы адресации с автомодификацией.
- •7.3 Многокомпонентные способы адресации.
- •Лекция №8 основы проограммирования на языке ассемблера для мп i8086.
- •8.1. Формат команд на языке встроенного ассемблера.
- •8.2. Архитектура мп i8086.
- •8.2.1 Сегментация памяти мп i8086.
- •8.2.2 Структура мп i8086.
- •8.2.3 Устройство шинного интерфейса.
- •8.2.4 Операционное устройство(оу).
- •8.3 Основные команды языка Ассемблер для мп i8086.
- •8.3.1 Команды пересылки данных.
- •Лекция №9 основы проограммирования на языке ассемблера для мп i8086. (продолжение).
- •9.1. Арифметические команды.
- •9.2. Логические команды.
- •9.3. Команды передачи управления.
- •9.4. Команды управления мп.
- •Лекция №10 запоминающие устройства.
- •10.1 Основные характеристики полупроводниковых запоминающих устройств.
- •10.2 Способы организации бис зу.
- •10.3 Классификация полупроводниковых зу.
- •10.3.1. Статические озу (Static Random Access Memory).
- •10.3.2. Озу динамического типа (Dynamic Random Access Memory dram).
- •10.3.4. Кмоп - озу.
- •Лекция №11 запоминающие устройства. (продолжение)
- •11.1. Постоянные зу. (Read Only Memory - rom).
- •11.2. Flash-память.
- •11.3. Корпуса модулей зу.
- •11.4. Наращивание объема и разрядности памяти, построенной на полупроводниковых зу.
- •Лекция № 12 организация магистралей мпс.
- •12.1 Типы магистралей мпс.
- •12.2 Циклы обращения к магистрали.
- •12.3 Примеры архитектур системных магистралей современных мпс.
- •Лекция №13 методы расширения адресного пространства мпс.
- •13.1 Предварительные замечания.
- •13.2 Метод окна.
- •13.3 Метод базовых регистров.
- •13.4 Метод банков.
- •13.5 Метод виртуальной памяти.
- •Лекция №14 система прерываний.
- •14.1 Понятие системы прерываний, классификация систем прерываний.
- •14.2. Организация радиальной системы прерываний.
- •14.3. Расширение радиальной системы прерываний методом поллинга.
- •14.4. Организация векторной системы прерываний.
- •Лекция №15 организация связи мпс с переферийными устройствами.
- •15.1. Классификация способов обмена информацией в мпс.
- •Прямой ввод/ вывод
- •15.3 Условный ввод-вывод.
- •15.4. Режим прямого доступа к памяти.
- •Лекция №16 интерфейсы мпс.
- •16.1. Принципы организации и классификация интерфейсов.
- •16.2. Элементная база интерфейсов.
- •16.3. Средства параллельного ввода/вывода.
- •Лекция №17 расширитель интерфейса для ibm-совместимых пк. Программируемый интервальный таймер.
- •17.1. Расширитель интерфейса рс на основе ппа кр580вв55.
- •17.2 Программируемый интервальный таймер.
- •17.3. Модуль преобразования цифрового кода в шим-сигнал на базе пит.
- •Лекция №18 интерфейсы последовательной связи.
- •18.1. Общая характеристика последовательной связи.
- •18.2. Асинхронные последовательные интерфейсы.
- •18.3. Бис для организации последовательного интерфейса.
- •18.4. Модем.
- •18.5. Стандарты физической связи. Стандарт rs -232- c.
14.2. Организация радиальной системы прерываний.
Для восприятия сигнала запроса на прерывание от внешнего устройства МП должен иметь специальные входы управления - так называемые линии IRQ (Interrupt Request). В наиболее простом случае МП имеет одну линию IRQ. Для программиста такая система прерываний представляется в виде точки входа (начального адреса) в процедуру обслуживания прерываний.
Всякий раз, когда МП воспринимает запрос на прерывание, он активизирует процедуру обслуживания, передавая ее начальный адрес в РС. Чтобы не потерялось старое содержимое РС, которое является адресом возврата в прерванную программу, и внутренних регистров МП, они сохраняются в системном стеке.
Процесс обработки запроса на прерывание во многом подобен процессам вызова и возврата из подпрограмм. Однако, в первом случае, вызов осуществляется командой САLL, которая сформирована и подставлена в общую последовательность с помощью аппаратуры системы прерываний, во втором случае команда САLL действительно присутствует в последовательности команд. По этой причине запрос на прерывание часто называют аппаратным вызовом подпрограмм.
Для увеличения числа одновременно обслуживаемых источников прерываний в систему вводится несколько линий IRQi с фиксированными стартовыми адресами подпрограмм обслуживания.
Обычно часть радиальных линий резервируется для приема внутренних прерываний МП, отражающих его критические состояния и требующих немедленного обслуживания. Остальные отводятся для приема внешних запросов.
Практически во всех системах прерываний предусмотрен дополнительный механизм программно-управляемой блокировки запросов, который реализуется с помощью набора флажков, разрешающих или запрещающих восприятие запросов на прерывание. Эти флажки представляют собой разряды специального регистра - регистра маски. Если флажок (разряд) сброшен, то соответствующий вход открыт для восприятия прерываний, в противном случае оно будет игнорироваться МПС.
В зависимости от числа подтвержденных запросов, одновременно находящихся на обслуживании, различают одно и многоуровневые системы прерываний.
В одноуровневых системах в каждый момент времени допускается лишь один подтвержденный запрос. Обработка всех других запросов откладывается до окончания текущего обслуживания. Примером одноуровневой системы прерываний с двумя источниками запросов служит система прерываний однокристального МК К1816ВЕ48.
Если несколько устройств одновременно запросили обслуживание, то система прерываний, в этом случае, выбирает одно из них на основании приоритета каждого из запросов. Приоритет отражает важность и срочность обслуживания запроса.
Многоуровневая система разрешает многократные (по числу уровней) прерывания одних процедур обслуживания другими. Для этого каждому уровню ставится в соответствие некоторое подмножество запросов, из их общего числа, и строго упорядоченный приоритет.
Процедуры обслуживания некоторого уровня могут быть прерваны лишь запросами более высокого уровня. Фоновую работу МП, связанную с самым нижним приоритетом, может прерывать любой запрос.
Примером МПС с двухуровневой системой прерываний и пятью источниками запросов служит однокристальный МК К1816ВЕ51.