- •Электронное учебное пособие
- •«Надежность технических систем и техногенный риск»
- •Подготовлено на базе учебного пособия
- •«Надежность технических систем и техногенный риск»
- •Предисловие
- •§ 1 Природа и характеристика опасностей в техносфере
- •1.1. Техносфера. Техника. Техническая система. Технология.
- •1.2. Определение опасности
- •1.3. Аксиомы о потенциальной опасности технических систем
- •1.4. Таксономия опасностей
- •1.4.1. Примеры таксономий
- •3. Неудачные проектные решения и отступления от проекта:
- •1.5. Алгоритм развития опасности и ее реализации
- •1.6. Источники опасности
- •1.7. Энергоэнтропийная концепция опасностей
- •1.8. Номенклатура опасностей
- •1.9. Квантификация опасностей
- •1.10. Идентификация опасностей
- •1.11. Причины и последствия
- •1.12. Пороговый уровень опасности
- •1.13. Показатели безопасности технических систем
- •§ 2. Основные положения теории риска
- •2.1. Понятие риска
- •2.2. Развитие риска на промышленных объектах
- •2.3. Основы методологии анализа и управления риском
- •2.3.1. Анализ риска: понятие и место в обеспечении безопасности технических систем
- •2.3.2. Оценка риска: понятие и место в обеспечении безопасности технических систем
- •2.3.3. Управление риском: понятие и место в обеспечении безопасности технических систем
- •2.3.4. Общность и различие процедур оценки и управления риском
- •2.3.5. Количественные показатели риска
- •2.4. Моделирование риска
- •2.5. Принципы построения информационных технологий управления риском
- •§ 3. Роль внешних факторов, воздействующих на формирование отказов технических систем
- •3.1. Общие замечания
- •3.2. Классификация внешних воздействующих факторов
- •3.3. Воздействие температуры
- •3.4. Воздействие солнечной радиации
- •3.5. Воздействие влажности
- •3.6. Воздействие давления
- •3.7. Воздействие ветра и гололеда
- •3.8. Воздействие примесей воздуха
- •3.9. Воздействие биологических факторов
- •3.10. Старение материалов
- •3.11. Факторы нагрузки
- •§ 4. Основны теории расчета надежности технических систем
- •4.1. Основные понятия теории надежности
- •4.2. Количественные характеристики надежности
- •4.3. Теоретические законы распределения отказов
- •4.4. Резервирование
- •4.4.2. Способы структурного резервирования
- •4.5. Основы расчета надежности технических систем по надежности их элементов
- •Надежность резервированной системы
- •Включение резервного оборудования системы замещением
- •Надежность резервированной системы в случае комбинаций отказов и внешних воздействий
- •Анализ надежности систем при множественных отказах
- •§ 5. Методика исследования надежности технических систем
- •5.1. Системный подход к анализу возможных отказов: понятие, назначение, цели и этапы, порядок, границы исследования
- •5.2. Выявление основных опасностей на ранних стадиях проектирования
- •5.3. Исследования в предпусковой период
- •5.4. Исследования действующих систем
- •5.5. Регистрация результатов исследования
- •5.6. Содержание информационного отчета по безопасности процесса
- •§ 6. Инженерные методы исследования безопасности технических систем
- •6.1. Понятие и методология качественного и количественного анализа опасностей и выявления отказов систем
- •6.2. Порядок определения причин отказов и нахождения аварийного события при анализе состояния системы
- •6.3. Предварительный анализ опасностей
- •6.4. Метод анализа опасности и работоспособности- аор (hazard and operability study - hazop)
- •6.5. Методы проверочного листа (check-list) и "что будет если ...?" ("what - if")
- •6.6. Анализ вида и последствий отказа - авпо (failure mode and effects analysis - fmea)
- •6.7. Анализ вида, последствий и критичности отказа- авпко (failure mode, effects and critical analysis - fmeca)
- •6.8. Дерево отказов - до (fault tree analysis - fta)
- •6.9. Дерево событий - дс (event tree analysis - еta)
- •6.10. Дерево решений
- •6.11. Логический анализ
- •6.12. Контрольные карты процессов
- •6.13. Распознавание образов
- •6.14. Таблицы состояний и аварийных сочетаний
- •§ 7. Оценка надежности человека как звена сложной технической системы
- •7.1. Причины совершения ошибок
- •7.2. Методология прогнозирования ошибок
- •7.3. Принципы формирования баз об ошибках человека
- •§ 8. Организация и проведение экспертизы технических систем
- •8.1. Причины, задачи и содержание экспертизы
- •8.2. Организация экспертизы
- •8.3. Подбор экспертов
- •8.4. Экспертные оценки
- •8.5. Опрос экспертов
- •8.6. Оценка согласованности суждений экспертов
- •8.7. Групповая оценка и выбор предпочтительного решения
- •8.8. Принятие решения
- •8.9. Работа на завершающем этапе
- •§ 9. Мероприятия, методы и средства обеспечения надежности и безопасности технических систем
- •9.1. Стадия проектирования технических систем
- •9.2. Стадия изготовления технических систем
- •9.3. Стадия эксплуатации технических систем
- •9.4. Техническая поддержка и обеспечение
- •9.5. Технические средства обеспечения надежности и безопасности технических систем
- •9.6. Организационно-управленческие мероприятия
- •9.7. Диагностика нарушений и аварийных ситуаций в технических системах
- •9.8. Алгоритм обеспечения эксплуатационной надежности технических систем
- •§ 10. Технические системы безопасности
- •10.1. Назначение и принципы работы защитных систем
- •10.2. Типовые структуры и принципы функционирования автоматических систем защиты
- •10.3. Автоматическая интеллектулизированная система защиты объекта и управления уровнем безопасности
- •10.4. Типовые локальные технические системы и средства безопасности
- •§ 11. Правовые аспекты анализа риска и управления промышленной безопасностью
- •11.1. Классификация промышленных объектов по степени опасности
- •11.2. Оценка опасности промышленного объекта
- •11.3. Декларация безопасности опасного промышленного объекта
- •11.4. Требования к размещению промышленного объекта
- •11.5. Система лицензирования
- •11.6. Экспертиза промышленной безопасности
- •11.7. Информирование государственных органов и общественности об опасностях и авариях
- •11.8. Ответственность производителей или предпринимателей за нарушения законодательства и нанесенный ущерб
- •11.9. Учет и расследование
- •11.10. Участие органов местного самоуправления и общественности в процессах обеспечения промышленной безопасности
- •11.11. Государственный контроль и надзор за промышленной безопасностью
- •11.12. Разработка планов по ликвидации аварий и локализации их последствий, а также планов по ликвидации чрезвычайных ситуаций
- •11.13. Экономические механизмы регулирования промышленной безопасности
- •11.14. Российское законодательство в области промышленной безопасности
- •§ 12. Принципы оценки экономического ущерба от промышленных аварий
- •12.1. Понятие ущерба и вреда. Структура вреда
- •12.2. Экономический и экологический вред
- •12.3. Принципы оценки экономического ущерба
6.9. Дерево событий - дс (event tree analysis - еta)
Дерево событий - алгоритм рассмотрения событий, исходящих от основного события (аварийной ситуации).
Дерево событий (ДС) используется для определения и анализа последовательности (вариантов) развития аварии, включающей сложные взаимодействия между техническими системами обеспечения безопасности. Вероятность каждого сценария развития аварийной ситуации рассчитывается путем умножения вероятности основного события на вероятность конечного события. При его построении используется прямая логика. Все значения P очень малы. Дерево не дает численных решений.
ПРИМЕР. Допустим, путем выполнения ПАО было выявлено, что критической частью реактора, т.е. подсистемой, с которой начинается риск, является система охлаждения реактора; таким образом, анализ начинается с просмотра последовательности возможных событий с момента разрушения трубопровода холодильной установки, называемого инициирующим событием, вероятность которого равна PA (рис. 6.9.1), т.е. авария начинается с разрушения (поломки) трубопровода - событие A. Далее анализируются возможные варианты развития событий (B, C, D и E), которые могут последовать за разрушением трубопровода. На рис. 6.9.1 изображено дерево исходных событий, отображающее все возможные альтернативы. На первой ветви рассматривается состояние электрического питания. Если питание есть, следующей подвергается анализу аварийная система охлаждения активной зоны реактора (АСОР). Отказ АСОР приводит к расплавлению топлива и к различным, в зависимости от целостности конструкции, утечкам радиоактивных продуктов.
Рис. 6.9.1. Дерево событий
Для анализа с использованием двоичной системы, в которой элементы либо выполняют свои функции, либо отказывают, число потенциальных отказов равно 2N-1, где N - число рассматриваемых элементов. На практике исходное дерево можно упростить с помощью инженерной логики и свести к более простому дереву, изображенному в нижней части рис. 6.9.1. В первую очередь представляет интерес вопрос о наличии электрического питания. Вопрос заключается в том, какова вероятность PB отказа электропитания и какое действие этот отказ оказывает на другие системы защиты. Если нет электрического питания, фактически никакие действия, предусмотренные на случай аварии с использованием для охлаждения активной зоны реактора распылителей, не могут производиться. В результате упрощенное дерево событий не содержит выбора в случае отсутствия электрического питания, и может произойти большая утечка, вероятность которой равна PA(PB. В случае, если отказ в подаче электрической энергии зависит от поломки трубопровода системы охлаждения реактора, вероятность PB следует подсчитывать как условную вероятность для учета этой зависимости. Если электрическое питание имеется, следующие варианты при анализе зависят от состояния АСОР. Она может работать или не работать, и ее отказ с вероятностью PC1 ведет к последовательности событий, изображенной на рис. 6.9.1. Следует обратить внимание на то, что по-прежнему имеются различные варианты развития аварии. Если система удаления радиоактивных материалов работоспособна, радиоактивные утечки меньше, чем в случае ее отказа. Конечно, отказ в общем случае ведет к последовательности событий с меньшей вероятностью, чем в случае работоспособности. Рассмотрев все варианты дерева, можно получить спектр возможных утечек и соответствующие вероятности для различных последовательностей развития аварии (рис. 6.9.1). Верхняя линия дерева является основным вариантом аварии реактора. При данной последовательности предполагается, что трубопровод разрушается, а все системы обеспечения безопасности сохраняют работоспособность.
Рис. 6.9.1. Гистограмма вероятностей для различных величин утечек