- •Электронное учебное пособие
- •«Надежность технических систем и техногенный риск»
- •Подготовлено на базе учебного пособия
- •«Надежность технических систем и техногенный риск»
- •Предисловие
- •§ 1 Природа и характеристика опасностей в техносфере
- •1.1. Техносфера. Техника. Техническая система. Технология.
- •1.2. Определение опасности
- •1.3. Аксиомы о потенциальной опасности технических систем
- •1.4. Таксономия опасностей
- •1.4.1. Примеры таксономий
- •3. Неудачные проектные решения и отступления от проекта:
- •1.5. Алгоритм развития опасности и ее реализации
- •1.6. Источники опасности
- •1.7. Энергоэнтропийная концепция опасностей
- •1.8. Номенклатура опасностей
- •1.9. Квантификация опасностей
- •1.10. Идентификация опасностей
- •1.11. Причины и последствия
- •1.12. Пороговый уровень опасности
- •1.13. Показатели безопасности технических систем
- •§ 2. Основные положения теории риска
- •2.1. Понятие риска
- •2.2. Развитие риска на промышленных объектах
- •2.3. Основы методологии анализа и управления риском
- •2.3.1. Анализ риска: понятие и место в обеспечении безопасности технических систем
- •2.3.2. Оценка риска: понятие и место в обеспечении безопасности технических систем
- •2.3.3. Управление риском: понятие и место в обеспечении безопасности технических систем
- •2.3.4. Общность и различие процедур оценки и управления риском
- •2.3.5. Количественные показатели риска
- •2.4. Моделирование риска
- •2.5. Принципы построения информационных технологий управления риском
- •§ 3. Роль внешних факторов, воздействующих на формирование отказов технических систем
- •3.1. Общие замечания
- •3.2. Классификация внешних воздействующих факторов
- •3.3. Воздействие температуры
- •3.4. Воздействие солнечной радиации
- •3.5. Воздействие влажности
- •3.6. Воздействие давления
- •3.7. Воздействие ветра и гололеда
- •3.8. Воздействие примесей воздуха
- •3.9. Воздействие биологических факторов
- •3.10. Старение материалов
- •3.11. Факторы нагрузки
- •§ 4. Основны теории расчета надежности технических систем
- •4.1. Основные понятия теории надежности
- •4.2. Количественные характеристики надежности
- •4.3. Теоретические законы распределения отказов
- •4.4. Резервирование
- •4.4.2. Способы структурного резервирования
- •4.5. Основы расчета надежности технических систем по надежности их элементов
- •Надежность резервированной системы
- •Включение резервного оборудования системы замещением
- •Надежность резервированной системы в случае комбинаций отказов и внешних воздействий
- •Анализ надежности систем при множественных отказах
- •§ 5. Методика исследования надежности технических систем
- •5.1. Системный подход к анализу возможных отказов: понятие, назначение, цели и этапы, порядок, границы исследования
- •5.2. Выявление основных опасностей на ранних стадиях проектирования
- •5.3. Исследования в предпусковой период
- •5.4. Исследования действующих систем
- •5.5. Регистрация результатов исследования
- •5.6. Содержание информационного отчета по безопасности процесса
- •§ 6. Инженерные методы исследования безопасности технических систем
- •6.1. Понятие и методология качественного и количественного анализа опасностей и выявления отказов систем
- •6.2. Порядок определения причин отказов и нахождения аварийного события при анализе состояния системы
- •6.3. Предварительный анализ опасностей
- •6.4. Метод анализа опасности и работоспособности- аор (hazard and operability study - hazop)
- •6.5. Методы проверочного листа (check-list) и "что будет если ...?" ("what - if")
- •6.6. Анализ вида и последствий отказа - авпо (failure mode and effects analysis - fmea)
- •6.7. Анализ вида, последствий и критичности отказа- авпко (failure mode, effects and critical analysis - fmeca)
- •6.8. Дерево отказов - до (fault tree analysis - fta)
- •6.9. Дерево событий - дс (event tree analysis - еta)
- •6.10. Дерево решений
- •6.11. Логический анализ
- •6.12. Контрольные карты процессов
- •6.13. Распознавание образов
- •6.14. Таблицы состояний и аварийных сочетаний
- •§ 7. Оценка надежности человека как звена сложной технической системы
- •7.1. Причины совершения ошибок
- •7.2. Методология прогнозирования ошибок
- •7.3. Принципы формирования баз об ошибках человека
- •§ 8. Организация и проведение экспертизы технических систем
- •8.1. Причины, задачи и содержание экспертизы
- •8.2. Организация экспертизы
- •8.3. Подбор экспертов
- •8.4. Экспертные оценки
- •8.5. Опрос экспертов
- •8.6. Оценка согласованности суждений экспертов
- •8.7. Групповая оценка и выбор предпочтительного решения
- •8.8. Принятие решения
- •8.9. Работа на завершающем этапе
- •§ 9. Мероприятия, методы и средства обеспечения надежности и безопасности технических систем
- •9.1. Стадия проектирования технических систем
- •9.2. Стадия изготовления технических систем
- •9.3. Стадия эксплуатации технических систем
- •9.4. Техническая поддержка и обеспечение
- •9.5. Технические средства обеспечения надежности и безопасности технических систем
- •9.6. Организационно-управленческие мероприятия
- •9.7. Диагностика нарушений и аварийных ситуаций в технических системах
- •9.8. Алгоритм обеспечения эксплуатационной надежности технических систем
- •§ 10. Технические системы безопасности
- •10.1. Назначение и принципы работы защитных систем
- •10.2. Типовые структуры и принципы функционирования автоматических систем защиты
- •10.3. Автоматическая интеллектулизированная система защиты объекта и управления уровнем безопасности
- •10.4. Типовые локальные технические системы и средства безопасности
- •§ 11. Правовые аспекты анализа риска и управления промышленной безопасностью
- •11.1. Классификация промышленных объектов по степени опасности
- •11.2. Оценка опасности промышленного объекта
- •11.3. Декларация безопасности опасного промышленного объекта
- •11.4. Требования к размещению промышленного объекта
- •11.5. Система лицензирования
- •11.6. Экспертиза промышленной безопасности
- •11.7. Информирование государственных органов и общественности об опасностях и авариях
- •11.8. Ответственность производителей или предпринимателей за нарушения законодательства и нанесенный ущерб
- •11.9. Учет и расследование
- •11.10. Участие органов местного самоуправления и общественности в процессах обеспечения промышленной безопасности
- •11.11. Государственный контроль и надзор за промышленной безопасностью
- •11.12. Разработка планов по ликвидации аварий и локализации их последствий, а также планов по ликвидации чрезвычайных ситуаций
- •11.13. Экономические механизмы регулирования промышленной безопасности
- •11.14. Российское законодательство в области промышленной безопасности
- •§ 12. Принципы оценки экономического ущерба от промышленных аварий
- •12.1. Понятие ущерба и вреда. Структура вреда
- •12.2. Экономический и экологический вред
- •12.3. Принципы оценки экономического ущерба
3.4. Воздействие солнечной радиации
На открытом воздухе поверхности изделий подвергаются действию прямых солнечных лучей. В материалах, используемых в конструкциях систем, под действием солнечной радиации возникают сложные процессы, вызывающие старение этих материалов. Кроме того, солнечная радиация является основным фактором формирования теплового режима атмосферы и поверхности земли. Поэтому влияние на свойства материалов высоких и низких температур воздуха определяется, в конечном счете, влиянием солнечной радиации на тепловой режим воздуха.
Приход солнечной радиации определяется, прежде всего, астрономическими факторами: продолжительностью дня и высотой солнца. Солнечная радиация, поступающая на земную поверхность, является одним из основных климатических факторов. В свою очередь, она в значительной степени зависит от циркуляции атмосферы и особенностей подстилающей поверхности.
Воздействие солнечной радиации на технические изделия определяется диапазоном электромагнитных волн, достигающих их поверхности.
Спектр излучаемой Солнцем энергии состоит из нескольких частей. На волны ультрафиолетовой части спектра (l<3900×10-10м) приходится около 9% энергии солнечного излучения, на волны видимой части спектра (l=3900×10-10... 7600×10-10 м) - около 41% и на инфракрасные волны (l=7600×10-10... 1000000×10-10м) - около 50%.
Атмосфера, окружающая Землю, поглощает около 19% солнечной энергии (водяным паром, озоном, углекислым газом, пылью и другими составляющими атмосферы). Около 35% энергии поглощается в космическом пространстве. Земной поверхности достигает только 45% солнечной энергии, но наличие облаков уменьшает количество солнечной энергии, достигающей Земли, примерно на 75% по сравнению с ясными днями.
Поверхностная плотность теплового потока суммарной радиации зависит от состояния облачности. Зависимо от высоты солнца (6-44,9°) в летние месяцы поток суммарной радиации изменяется в безоблачную погоду от 11,2×10-3до 78,4×10-3Вт×см-2, при наличии солнца и облаков в 9,8×10-3до 80,5×10-3Вт×см-2, при сплошной облачности от 4,2×10-3до 25,9×10-3Вт×см-2.
Поток суммарной радиации также зависит и от самих облаков, если солнце просвечивает через перистые облака, то поток суммарной радиации будет изменяться от 4,9×10-3до 64,4×10-3Вт×см-2, если же облака слоистые - от 3,5×10-3до 38,5×10-3Вт×см-2. Влияние на величину суммарной радиации оказывает также высота облаков, если облака высокие, поток изменяется от 5,6×10-3до 49,7×10-3Вт×см-2, если низкие - от 6,3×10-3до 27,3×10-3Вт×см-2.
Интегральная плотность теплового потока солнечной радиации зависит от высоты. До 15 км интегральная плотность теплового потока составляет 1125 Вт/м2, в том числе плотность потока ультрафиолетовой части спектра (l=280-400 мкм) - 42 Вт/м2, свыше 15 км - 1380 Вт/м2, плотность потока ультрафиолетовой части спектра - 10,0 Вт/м2.
Изменение плотности теплового потока солнечной радиации оценивается отношением ее максимального значения к минимальному, выраженному в %. Наименьшие суточные изменения наблюдаются в пустынных районах, для которых характерна безоблачность.
Наличие паров воды и пыли в воздухе существенно уменьшает плотность теплового потока солнечной радиации. Наиболее сильное действие на материалы и изделия оказывают солнечные лучи, перпендикулярно падающие на поверхность.
Повреждения от солнечных лучей можно разделить на две группы: фотохимические и фотоокислительные процессы.
При повреждении металлических поверхностей существенную роль играет фотоокислительное расщепление. Одновременное воздействие кислорода и влаги создает посредством окислительных процессов дополнительные количества энергии. Поверхность металлов при ультрафиолетовом облучении активируется, поэтому подвергается опасности коррозии. Для расщепления молекулярной структуры необходима определенная частота излучения, т.к. энергия фотона соответствует произведению постоянной Планка на частоту.
Под действием солнечных лучей в органических материалах происходят сложные фотолитические процессы - процессы разложения химических соединений, в результате чего меняются свойства материалов.
Солнечная радиация (особенно ее ультрафиолетовая часть) достаточна для разрушения многих, даже очень сильных, связей в молекулах полимеров, отчего происходит старение и возникают определенные отказы. Процесс старения полимерных материалов ускоряют тепло, влага, кислород воздуха (атмосферное старение), излучения высоких энергий и др. В свою очередь, скорость старения под действием солнечной радиации зависит от ее интенсивности, доли ультрафиолетового излучения в солнечном спектре и лучепоглощающей способности полимеров. Установлено, что разрыв молекулярных связей и процессы старения большинства полимеров происходят при интенсивности радиации, превышающей 16,8 кДж/(м2×мин). Известно, что в основе старения полимерных материалов лежат два одновременно протекающих процесса: деструкция - разрыв связей между атомами молекул и образование осколков молекул полимера, и структурирование - образование новых связей между атомами и осколками молекул, возникших в результате деструкции. В результате старения полимерных материалов изменяются их механические и электрические свойства, цвет и др.
Основное действие солнечного излучения - нагрев поверхности изделий и, как следствие, повышение температуры внутри устройства. Нагрев тела солнечными лучами зависит от интенсивности солнечной радиации, температуры окружающей среды и от отражательной способности тела. Будучи нагретым, тело само становится источником излучения. Закономерность теплообмена поверхностей удобно проследить на теплообмене тонкостенного металлического кожуха. Для случая матового черного кожуха, внутри которого нет источника, излучение энергии можно представить схемой на рис.3.4.1
Рис. 3.4.1 Схема для определения баланса излучения стенок кожуха
Толщина стенок кожуха мала, поэтому можно допустить, что температуры наружных и внутренних поверхностей стенок кожуха одинаковы. Пользуясь уравнением Стефана-Больцмана, составляем баланс излучения стенок кожуха.
Верхняя крышка кожуха, поглощающая тепло солнечных лучей, излучает его наружу и внутрь кожуха (d ). Нижняя стенка кожуха (дно) поглощает тепло, излучаемое верхней крышкой, и излучает его внутрь кожуха и наружу (d ). При расположении кожуха на почве нижняя стенка отдает тепло почве и может получать тепло от нее (d ).
При температурном равновесии системы справедливы следующие математические зависимости:
dТВ4= d/2 (ТD4- ТВ4);
dТD4= 1/2(1,6+dТВ4),
где ТВ- температура крышки кожуха, К;
ТD- температура дна кожуха, К;
ТS- температура почвы, К;
d- постоянная излучения.