- •Электронное учебное пособие
- •«Надежность технических систем и техногенный риск»
- •Подготовлено на базе учебного пособия
- •«Надежность технических систем и техногенный риск»
- •Предисловие
- •§ 1 Природа и характеристика опасностей в техносфере
- •1.1. Техносфера. Техника. Техническая система. Технология.
- •1.2. Определение опасности
- •1.3. Аксиомы о потенциальной опасности технических систем
- •1.4. Таксономия опасностей
- •1.4.1. Примеры таксономий
- •3. Неудачные проектные решения и отступления от проекта:
- •1.5. Алгоритм развития опасности и ее реализации
- •1.6. Источники опасности
- •1.7. Энергоэнтропийная концепция опасностей
- •1.8. Номенклатура опасностей
- •1.9. Квантификация опасностей
- •1.10. Идентификация опасностей
- •1.11. Причины и последствия
- •1.12. Пороговый уровень опасности
- •1.13. Показатели безопасности технических систем
- •§ 2. Основные положения теории риска
- •2.1. Понятие риска
- •2.2. Развитие риска на промышленных объектах
- •2.3. Основы методологии анализа и управления риском
- •2.3.1. Анализ риска: понятие и место в обеспечении безопасности технических систем
- •2.3.2. Оценка риска: понятие и место в обеспечении безопасности технических систем
- •2.3.3. Управление риском: понятие и место в обеспечении безопасности технических систем
- •2.3.4. Общность и различие процедур оценки и управления риском
- •2.3.5. Количественные показатели риска
- •2.4. Моделирование риска
- •2.5. Принципы построения информационных технологий управления риском
- •§ 3. Роль внешних факторов, воздействующих на формирование отказов технических систем
- •3.1. Общие замечания
- •3.2. Классификация внешних воздействующих факторов
- •3.3. Воздействие температуры
- •3.4. Воздействие солнечной радиации
- •3.5. Воздействие влажности
- •3.6. Воздействие давления
- •3.7. Воздействие ветра и гололеда
- •3.8. Воздействие примесей воздуха
- •3.9. Воздействие биологических факторов
- •3.10. Старение материалов
- •3.11. Факторы нагрузки
- •§ 4. Основны теории расчета надежности технических систем
- •4.1. Основные понятия теории надежности
- •4.2. Количественные характеристики надежности
- •4.3. Теоретические законы распределения отказов
- •4.4. Резервирование
- •4.4.2. Способы структурного резервирования
- •4.5. Основы расчета надежности технических систем по надежности их элементов
- •Надежность резервированной системы
- •Включение резервного оборудования системы замещением
- •Надежность резервированной системы в случае комбинаций отказов и внешних воздействий
- •Анализ надежности систем при множественных отказах
- •§ 5. Методика исследования надежности технических систем
- •5.1. Системный подход к анализу возможных отказов: понятие, назначение, цели и этапы, порядок, границы исследования
- •5.2. Выявление основных опасностей на ранних стадиях проектирования
- •5.3. Исследования в предпусковой период
- •5.4. Исследования действующих систем
- •5.5. Регистрация результатов исследования
- •5.6. Содержание информационного отчета по безопасности процесса
- •§ 6. Инженерные методы исследования безопасности технических систем
- •6.1. Понятие и методология качественного и количественного анализа опасностей и выявления отказов систем
- •6.2. Порядок определения причин отказов и нахождения аварийного события при анализе состояния системы
- •6.3. Предварительный анализ опасностей
- •6.4. Метод анализа опасности и работоспособности- аор (hazard and operability study - hazop)
- •6.5. Методы проверочного листа (check-list) и "что будет если ...?" ("what - if")
- •6.6. Анализ вида и последствий отказа - авпо (failure mode and effects analysis - fmea)
- •6.7. Анализ вида, последствий и критичности отказа- авпко (failure mode, effects and critical analysis - fmeca)
- •6.8. Дерево отказов - до (fault tree analysis - fta)
- •6.9. Дерево событий - дс (event tree analysis - еta)
- •6.10. Дерево решений
- •6.11. Логический анализ
- •6.12. Контрольные карты процессов
- •6.13. Распознавание образов
- •6.14. Таблицы состояний и аварийных сочетаний
- •§ 7. Оценка надежности человека как звена сложной технической системы
- •7.1. Причины совершения ошибок
- •7.2. Методология прогнозирования ошибок
- •7.3. Принципы формирования баз об ошибках человека
- •§ 8. Организация и проведение экспертизы технических систем
- •8.1. Причины, задачи и содержание экспертизы
- •8.2. Организация экспертизы
- •8.3. Подбор экспертов
- •8.4. Экспертные оценки
- •8.5. Опрос экспертов
- •8.6. Оценка согласованности суждений экспертов
- •8.7. Групповая оценка и выбор предпочтительного решения
- •8.8. Принятие решения
- •8.9. Работа на завершающем этапе
- •§ 9. Мероприятия, методы и средства обеспечения надежности и безопасности технических систем
- •9.1. Стадия проектирования технических систем
- •9.2. Стадия изготовления технических систем
- •9.3. Стадия эксплуатации технических систем
- •9.4. Техническая поддержка и обеспечение
- •9.5. Технические средства обеспечения надежности и безопасности технических систем
- •9.6. Организационно-управленческие мероприятия
- •9.7. Диагностика нарушений и аварийных ситуаций в технических системах
- •9.8. Алгоритм обеспечения эксплуатационной надежности технических систем
- •§ 10. Технические системы безопасности
- •10.1. Назначение и принципы работы защитных систем
- •10.2. Типовые структуры и принципы функционирования автоматических систем защиты
- •10.3. Автоматическая интеллектулизированная система защиты объекта и управления уровнем безопасности
- •10.4. Типовые локальные технические системы и средства безопасности
- •§ 11. Правовые аспекты анализа риска и управления промышленной безопасностью
- •11.1. Классификация промышленных объектов по степени опасности
- •11.2. Оценка опасности промышленного объекта
- •11.3. Декларация безопасности опасного промышленного объекта
- •11.4. Требования к размещению промышленного объекта
- •11.5. Система лицензирования
- •11.6. Экспертиза промышленной безопасности
- •11.7. Информирование государственных органов и общественности об опасностях и авариях
- •11.8. Ответственность производителей или предпринимателей за нарушения законодательства и нанесенный ущерб
- •11.9. Учет и расследование
- •11.10. Участие органов местного самоуправления и общественности в процессах обеспечения промышленной безопасности
- •11.11. Государственный контроль и надзор за промышленной безопасностью
- •11.12. Разработка планов по ликвидации аварий и локализации их последствий, а также планов по ликвидации чрезвычайных ситуаций
- •11.13. Экономические механизмы регулирования промышленной безопасности
- •11.14. Российское законодательство в области промышленной безопасности
- •§ 12. Принципы оценки экономического ущерба от промышленных аварий
- •12.1. Понятие ущерба и вреда. Структура вреда
- •12.2. Экономический и экологический вред
- •12.3. Принципы оценки экономического ущерба
3.2. Классификация внешних воздействующих факторов
Для обеспечения надежной работы сложных систем необходимо обеспечить надежную работу входящих в них простых элементов, это зависит от умения оценивать ожидаемое воздействие внешней среды.
В зависимости от характера воздействий на изделия внешние воздействующие факторы (ВВФ) делят на семь классов: механические, кинематические и другие природные ВВФ, биологические, радиационные, ВВФ электромагнитных полей, ВВФ специальных сред, термические. Каждый класс в зависимости от физической, биологической или химической сущности явлений, лежащих в основе ВВФ, делят на группы, а каждую группу - на виды, с соответствующими характеристиками.
Для элементов технических систем, расположенных на земной поверхности, определяющими и дестабилизирующими внешними факторами являются климатические. Класс климатических факторов подразделяют на группы и виды факторов (табл. 3.2.1).
Таблица 3.2.1
Класс климатических и других природных ВВФ
Для конкретных типов или групп технических изделий виды воздействующих климатических факторов и их значение устанавливают в зависимости от макроклиматических районов, в которых будут эксплуатироваться системы.
Формирование климата обусловливается воздействием режима солнечной радиации, циркуляции атмосферного воздуха, влагооборота, физико-географических особенностей, воздействием человека, а также географическим положением территории. Основные характеристики климатических районов даны в табл.3.2.1.
Воздействие климатических факторов вызывает определенного вида отказы, интенсифицирует потоки отказов, возникающих в результате случайных перегрузок, несовершенства структурной схемы машины и др.
На машины, механизмы и аппараты технических систем при эксплуатации на открытом воздухе действуют климатические факторы и атмосферные явления, которые вызывают изменение физических и химических свойств конструкционных и эксплуатационных материалов.
Ухудшение эксплуатационных свойств материалов и условий работы механизмов машин вызывает пусковые и нагрузочные отказы и ускоряет появление внезапных и постепенных отказов.
Поскольку под действием климатических факторов снижается надежность элементов систем (прежде всего, изменяются свойства конструкционных и эксплуатационных материалов), следует рассмотреть влияние климатических факторов на эти материалы
3.3. Воздействие температуры
Влияние низких и высоких температур на свойства материалов в большинстве случаев носит диаметрально противоположный характер. Кроме того, быстрое изменение этих температур (в течение суток или нескольких часов) увеличивает эффект вредного их воздействия на машины.
Таблица 3.3.1
Основные характеристики климатических районов
Тепловые воздействия возникают как снаружи системы - солнечная радиация, тепло от близко расположенных источников, так и внутри системы - выделение тепла электронными схемами, при трении механических узлов, химической реакции и др. Особенно вреден нагрев узлов при повышенной влажности окружающей среды, а также при циклическом изменении этих факторов.
Различают три вида тепловых воздействий:
Непрерывное.Рассматривают при анализе надежности систем, работающих в стационарных условиях.
Периодическое.Рассматривают при анализе надежности систем при повторно-кратковременном включении аппаратуры и изделий под нагрузку и при резких колебаниях условий эксплуатации, а также при суточном изменении внешней температуры.
Апериодическое.Оценивают при работе изделий в условиях теплового удара, следствием чего являются внезапные отказы.
Повреждение изделий, вызванное стационарным тепловым воздействием, обусловлено, в основном, превышением при эксплуатации предельно допустимого значения температуры.
Деформации изделий, возникающие при периодических тепловых воздействиях, приводят к возникновению повреждений. На некоторые изделия одновременно с периодическим нагревом и охлаждением действуют и резкие изменения давления, что и приводит к повреждениям.
Высокая скорость изменения температуры (тепловой удар), имеющие место при апериодических воздействиях тепла, приводит к быстрому изменению размеров материалов, что является причиной повреждений. Этот факт чаще проявляется при недостаточном учете коэффициентов линейного расширения сопрягаемых материалов. В частности, при повышенных температурах заливочные материалы размягчаются, происходит расширение сопрягаемых с ними материалов, а при переходе к отрицательным температурам происходит сжатие заливочных материалов и растрескивание их в местах соприкосновения с металлами. При отрицательных температурах возможна значительная усадка заливочных материалов, следовательно, у электроизделий повышается возможность электрического перекрытия. Низкие температуры непосредственно ухудшают основные физико-механические свойства конструкционных материалов, повышают возможность хрупкого разрушения металлов. Низкие температуры существенно влияют на свойства полимерных материалов, вызывая процесс их стеклования, высокие же температуры изменяют упругость этих материалов. Нагрев полимерных изоляционных материалов резко снижает их электрическую прочность и сроки службы.
При оценке показателей надежности технических изделий, входящих в системы, необходимы данные об изменениях температуры окружающего воздуха во времени.
Характер изменения температуры во времени описывается случайным процессом:
где - средняя температура, соответствующая времени t,°С;
t - время от 0 ч 1 января до 24 ч 31 декабря;
y- случайная составляющая температуры, соответствующая времени t,°С.
Среднее значение рассчитывают по формуле:
где А0- коэффициент численно равный математическому ожиданию средней годовой температуры,°С;
Аi, Вi- амплитуды колебаний математического ожидания температуры, соответствующие частотеwi.
При резком изменении температуры воздуха происходит неравномерное охлаждение или нагрев материала, что вызывает дополнительные напряжения в нем. Наибольшие напряжения возникают при резком охлаждении деталей. Относительное удлинение или сжатие отдельных слоев материала определяется зависимостью
,
где at- коэффициент линейного расширения;
t1- температура в первом слое;
t2- температура во втором слое; t2 = t1+ (¶t/¶l)Dl;
Dl - расстояние между слоями.
Дополнительные (температурные) напряжения в материале
,
где Е - модуль упругости материала.
Зависимость удельной электропроводности материала от его температуры определяется уравнением,
где sэо- удельная электропроводность при t = 0°С,
a- температурный коэффициент.
Скорость процессов механического разрушения нагруженного твердого тела и, соответственно, время до разрушения зависят от структуры и свойств тела, от напряжения, вызываемого нагрузкой, и температуры.
Предложен ряд эмпирических формул, описывающих зависимость времени до разрыва t(или скорости разрушенияu2) от этих факторов. Наибольшее признание получила установленная экспериментально для многих материалов (чистых металлов, сплавов, полимерных материалов, полупроводников органического и неорганического стекла и др.) следующая температурно-временная зависимость прочности - между напряжениемs, температурой Т и временемtот момента приложения постоянной механической нагрузки до разрушения образца:
,
где t0 , U0 ,g- параметры уравнения, характеризующего прочностные свойства материалов.
Графики зависимости lgtотsдля различных Т представляют собой семейства прямых линий, сходящихся при экстраполяции в одной точке при lgt= lgt0(рис. 3.3.1).
Рис. 3.3.1. Типичная зависимость долговечности материала от напряжения при различных температурах (Т1<Т2<Т3<Т4)
Для скорости процесса разрушения, следовательно, можно написать:
.
Все изменения прочностных свойств материалов, проходящие при изменении их чистоты, при тепловой обработке и деформации, связаны с изменением только величины g. Значенияgможет быть вычислено из временной зависимости, полученной при одной температуре:
g = a R T ,
где a- тангенс угла наклона прямой lg = f(s).
Как говорилось выше, низкие температуры изменяют физико-механические свойства конструкционных и эксплуатационных материалов. Результатами воздействия низких температур являются:
– увеличение вязкости дизельного топлива;
– снижение смазывающих свойств масел и густых смазок;
– застывание механических жидкостей, масел и смазок;
– замерзание конденсата и охлаждающих жидкостей;
– снижение ударной вязкости нехладостойких сталей;
– отвердевание и охрупчивание резин;
– уменьшение сопротивления электропроводников;
– обледенение и покрытие инеем элементов машин.
Последствиями этих факторов являются:
– ухудшение условий работы узлов трения и устройств машины;
– снижение несущей способности элементов;
– ухудшение эксплуатационных свойств материалов;
– воздействие дополнительных нагрузок;
– пробой изоляции обмоток электрических машин систем.
Перечисленные влияния низких температур на свойства материалов вызывают увеличение параметров пусковых, нагрузочных и рабочих отказов, а также снижение сроков службы элементов машин.