
- •Предмет та завдання біологічної хімії. Значення біохімії в системі природничих наук. Зв`язок біохімії з іншими дисциплінами.
- •Жиророзчинні вітаміни та їхня роль.
- •Електронтранспортний ланцюг мітохондрій (дихальний ланцюг).
- •Білки, сучасне уявлення про їхню будову. Рівні структурної організації. Функції білків.
- •Шляхи перетворення та розпаду амінокислот в організмі.
- •Перетворення ліпідів. Розщеплення ліпідів у клітині. Процеси окислення жирних кислот.
- •Методи виділення та класифікація білків. Характеристика найважливіших груп простих та складних білків.
- •Обмін вуглеводів. Розпад та біосинтез полісахаридів. Взаємоперетворення вуглеводів.
- •Ліпіди, їхня біологічна роль. Загальні властивості, класифікація та номенклатура ліпідів.
- •Амінокислоти, їхні властивості та класифікація. Методи визначення.
- •Анаеробний розпад вуглеводів.
- •Характеристика основних ліпідів організму людини: класифікація, добова потреба та біологічна роль. Будова простих та складних ліпідів.
- •Нуклеїнові кислоти. Будова нуклеїнових кислот. Пуринові та піримідинові основи, мононуклеотиди, нуклеозід ди- і трифосфати, їхня фізіологічна роль.
- •Аеробний розпад вуглеводів.
- •Обмін речовин та енергії. Поняття про загальні та специфічні шляхи метаболізму. Загальний шлях катаболізму. Цитратний цикл, механізми його регуляції.
- •Гипоэнергетические состояния
- •Ферменти та їхні властивості як біологічних каталізаторів, біологічна роль.
- •Окислювальне перетворення глюкозо-6-фосфату (пентозофосфатний шлях і його значення).
- •Біологічна цінність харчових ліпідів. Переварювання, всмоктування та ресинтез ліпідів у органах травного тракту.
- •Принципи організації та функціонування живої матерії. Біохімічні компоненти клітини. Біохімічний склад, будова, функції біомембран. Компартменталізація процесів у клітині.
- •Структура і роль днк.
- •Біоенергетика. Утворення атф та інших макроергічних сполук.
- •Біохімія крові. Кров як внутрішнє середовище організму. Хімічний склад крові. Діагностичне значення загального аналізу крові.
- •Метаболізм ксенобіотиків. Детоксикаційна функція печінки. Біотрансформація ксенобіотиків. Мікросомальне окислення. Цитохром р-450.
- •Вітаміни. Роль вітамінів у харчуванні тварин і людей. Водорозчинні вітаміни.
- •Вуглеводи та їхня біологічна роль. Класифікація та номенклатура вуглеводів. Структура і властивості моно- і полісахаридів.
- •Сучасні уявлення про структуру білків. Рівні просторової організації білка. Характеристика зв`язків, які їх стабілізують. Шаперони та їхня біологічна роль.
- •Коферменти і вітаміни. Роль металів та інших кофакторів у функціонуванні ферментів.
- •Гормони: загальна характеристика, роль у міжклітинній інтеграції функцій організму. Класифікація гормонів.
- •Біологічні мембрани. Функції, будова. Будова ліпідного біслоя, типи зв`язків та рух його окремих компонентів. Білки мембран. Механізми трансмембранного переносу.
-
Гормони: загальна характеристика, роль у міжклітинній інтеграції функцій організму. Класифікація гормонів.
Гормоны — сигнальные вещества, образующиеся а клетках эндокринных желез. После синтеза гормоны поступают в кровь и переносятся к органам-мишеням, где выполняют определенные биохимические и физиологические регуляторные функции. Границы между гормонами и другими сигнальными веществами, такими, как медиаторы, нейромедиаторы и ростовые факторы довольно условные. Часто эти сигнальные вещества имеют общие закономерности биосинтеза, метаболизма и механизма действия.
Существуют три класса гормонов: пептидные, стероидные и амины. К числу пептидных гормонов, которые могут содержать от 3 до 200 аминокислотных остатков, относятся все гормоны гипоталамуса и гипофиза, а также инсулин и глюкагон, секретируемые поджелудочной железой. Гормоны, принадлежащие к классу аминов, представляют собой низкомолекулярные водорастворимые соединения, содержащие в своем составе аминогруппы, к их числу относятся адреналин, секретируемый мозговым слоем надпочечников, и тиреоидные гормоны. К стероидным гормонам (которые хорошо растворимые в жирах) относятсягормоны коры надпочечников, андрогены (мужские половые гормоны) и эстрогены (женские половые гормоны). Из всех гормонов наиболее полно изучен адреналин. Его хорошо известный механизм действия используется в качестве модели при исследовании других гормонов. Органы мишени адреналина – печень и скелетные мышци, а также сердце и сердечно – сосудистая система. Адреналин и норадреналин очень близкие по структуре гормоны. Они образуются в мозговом слое надпочечнков, расположенных непосредственно над почками.
Гормоны щитовидной железы представляют два различных класса гормонов, выполняющих разные физиологические функции. Щитовидная железа производит два так называемых тиреоидных гормона: •тироксин •трийодтиронин, Они являются йодированными производными аминокислоты тирозина и отличаются лишь числом атомов йода в молекуле, но имеют общие физиологические свойства. Кроме того, щитовидная железа производит также пептидный гормон •тиреокальцитонин (кальцитонин), который принимает участие в регуляции фосфорно-кальциевого обмена, активности остеокластов и остеобластов. Гормоны щитовидной железы обладают специфической чертой. Для их биологической активности требуется микроэлемент йод, который в малых количествах присутствует в пище и воде. Превращение минерального йода в форму, способную включаться в состав органических веществ осуществляется с помощью сложного механизма и может идти лишь в одном органе человеческого организма - щитовидной железе.
В организме человека насчитываются разнообразные гормоны: гормоны щитовидной железы, женские гормоны, мужские гормоны, гормоны крови, гормоны роста, стероидные гормоны, гормоны отвечающие за рост груди, пептидные гормоны и некоторые другие.
Каждый гормон является центральным звеном сложной системы гормональной регуляции. Гормоны синтезируются в виде предшественников, прогормонов, а зачастую и депонируются, в специализированных клетках эндокринных желез. Отсюда они по мере метаболической необходимости поступают в кровоток. Большинство гормонов переносится в виде комплексов с плазматическими белками, так называемыми переносчиками гормонов, причем связывание с переносчиками носит обратимый характер. Гормоны разрушаются соответствующими ферментами, обычно в печени. Наконец, гормоны и продукты их деградации выводятся из организма экскреторной системой, обычно почками. Все перечисленные процессы влияют на концентрацию гормонов и осуществляют контроль за передачей сигналов.
В органах-мишенях имеются клетки, несущие рецепторы, способные связывать гормоны и тем самым воспринимать гормональный сигнал. После связывания гормонов рецепторы передают информацию клетке и запускают цепь биохимических реакций, определяющих клеточный ответ на действие гормона.
Используются в организме для поддержания его гомеостаза, а также для регуляции многих функций (роста, развития, обмена веществ, реакции на изменения условий среды).
Когда гормон, находящийся в крови, достигает клетки-мишени, он вступает во взаимодействие со специфическими рецепторами; рецепторы «считывают послание» организма, и в клетке начинают происходить определенные перемены. Каждому конкретному гормону соответствуют исключительно «свои» рецепторы, находящиеся в конкретных органах и тканях — только при взаимодействии гормона с ними образуется гормон-рецепторный комплекс.
Механизмы действия гормонов могут быть разными. Одну из групп составляют гормоны, которые соединяются с рецепторами, находящимися внутри клеток — как правило, в цитоплазме. К ним относятся гормоны с липофильными свойствами — например, стероидные гормоны (половые, глюко- и минералокортикоиды), а также гормоны щитовидной железы. Будучи жирорастворимыми, эти гормоны легко проникают через клеточную мембрану и начинают взаимодействовать с рецепторами в цитоплазме или ядре. Они слабо растворимы в воде, при транспорте по крови связываются с белками-носителями. Считается, что в этой группе гормонов гормон-рецепторный комплекс выполняет роль своеобразного внутриклеточного реле — образовавшись в клетке, он начинает взаимодействовать с хроматином, который находится в клеточных ядрах и состоит из ДНК и белка, и тем самым ускоряет или замедляет работу тех или иных генов. Избирательно влияя на конкретный ген, гормон изменяет концентрацию соответствующей РНК и белка, и вместе с тем корректирует процессы метаболизма.
Биологический результат действия каждого гормона весьма специфичен. Хотя в клетке-мишени гормоны изменяют обычно менее 1 % белков и РНК, этого оказывается вполне достаточно для получения соответствующего физиологического эффекта.
Большинство других гормонов характеризуются тремя особенностями:
-
они растворяются в воде;
-
не связываются с белками-носителями;
-
начинают гормональный процесс, как только соединяются с рецептором, который может находиться в ядре клетки, ее цитоплазме или располагаться на поверхности плазматической мембраны.
В механизме действия гормон - рецепторного комплекса таких гормонов обязательно участвуют посредники, которые индуцируют ответ клетки. Наиболее важные из таких посредников — ц АМФ (циклический аденозинмонофосфат), инозитолтрифосфат, ионы кальция. Так, в среде, лишенной ионов кальция, или в клетках с недостаточным их количеством действие многих гормонов ослабляется; при применении веществ, увеличивающих внутриклеточную концентрацию кальция, возникают эффекты, идентичные воздействию некоторых гормонов. Участие ионов кальция как посредника обеспечивает воздействие на клетки таких гормонов, как вазопрессин и катехоламины. Однако есть гормоны, у которых внутриклеточный посредник до сих пор не обнаружен. Из наиболее известных таких гормонов можно назвать инсулин, у которого на роль посредника предлагали цАМФ и цГМФ, а также ионы кальция и даже перекись водорода, но убедительных доказательств в пользу какого-нибудь одного вещества до сих пор нет. Многие исследователи считают, что в таком случае посредниками могут выступать химические соединения, структура которых полностью отличается от структуры уже известных науке посредников.
Выполнив свою задачу, гормоны либо расщепляются в клетках-мишенях или в крови, либо транспортируются в печень, где расщепляются, либо, наконец, удаляются из организма в основном с мочой (например, адреналин).
Общие свойства гормонов:
-
Строгая специфичность физиологического действия.
-
Высокая биологическая активность: гормоны оказывают свое физиологическое действие в чрезвычайно малых дозах.
-
Дистантный характер действия: клетки-мишени располагаются обычно далеко от места образования гормона.
-
Многие гормоны (стероидные и производные аминокислот) не имеют видовой специфичности.
-
Генерализованность действия.
-
Пролонгированность действия.