- •Министерство образования Российской Федерации
- •Введение
- •В 1798 году французский инженер Гаспар Монж опубликовал свой труд, «Начертательная геометрия» который лег в основу проекционного черчения.
- •1. Виды проецирования
- •1.1. Параллельное проецирование
- •1.3. Проецирование точки на две плоскости проекции
- •1.4. Расположение точек на комплексном чертеже
- •1.5.Проецирование точки на три плоскости проекции
- •2. Проецирование отрезка прямой линии
- •2.1 Проецирование прямой линии на две и три плоскости проекции.
- •2.2.Положение прямой линии относительно плоскостипроекции
- •Прямая, параллельная фронтальной плоскости проекции на-
- •2.3.Взаимное положение двух прямых на комплексном чертеже
- •2.4.Построение на чертеже натуральной величины отрезка прямой общего положения и углов наклона прямой к плоскостям проекций
- •2.5. Точка на прямой. Проецирование прямого угла. Следы прямой.
- •3. Плоскость
- •3.1 Задание и изображение плоскости на чертеже
- •3.2 Следы плоскости
- •3.3 Взаимопринадлежность точки и прямой плоскости. Прямые особого положения.
- •3.4 Положение плоскостей относительно плоскостей проекций
- •2. Если плоскость перпендикулярна к одной из плоскостей
- •3.5.1. Пересечение прямой линии с плоскостью, перпендикулярной к одной или двум плоскостям проекций
- •3.6. Построение линии пересечения двух плоскостей
- •3.7.Пересечение прямой линии с плоскостью общего положения
- •3.8. Пересечение двух плоскостей общего положения
- •3.9. Построение линии пересечения двух плоскостей по точкам пресечения прямых линий с плоскостью
- •4. Способы преобразования чертежа
- •4.1 Способ перемены плоскостей проекций
- •4.1.1. Введение в систему н, V одной дополнительной плоскости проекции
- •4.1.2.Введение в систему h.V двух дополнительных плоскостей проекций
- •4.2.Способ вращения вокруг оси, перпендикулярной к плоскости проекций
- •4.2.1.Вращение вокруг заданной оси
- •4.2.2.Вращение вокруг выбранной оси
- •4.3. Способ параллельного перемещения
- •5.Поверхность. Определение, задание и изображение начертеже. Определитель поверхности. Принадлежность точки и линии поверхности. Построение линии пересечения поверхностей.
- •5.1. Гранные поверхности.
- •Призмы и пирамиды в трех проекциях, точки на поверхности
- •5.2.Поверхсности вращения
- •5.3.Точка и линия на поверхности
- •5.4.0Бщие сведения о способах построения линии взаимного пересечения двух поверхностей
- •5.5.Пересечение поверхностей, когда одна из них проецирующая
- •5.6. Способ вспомогательных секущих плоскостей
- •Рис 5.14
- •5.7.Способ вспомогательных секущих сфер с постоянным центром
- •5.8. Некоторые особые случаи пересечения поверхностей
- •5.8.1. Пересечение поверхностей, описанных вокруг одной сферы
- •6.1.Общие сведения о пересечении поверхности плоскостью.
- •6.2.Пересечение пирамиды с плоскостью
- •6.3. Пересечение призмы с плоскостью
- •6.4. Пересечение цилиндра с плоскостью
- •6.5. Пересечение конуса с плоскостью
- •Рис 6.7
- •6.6. Пересечение сферы с плоскостью
- •6.7. Пересечение тора с плоскостью
- •6.8. Примеры построения чертежей деталей, усеченных проецирующими плоскостями
- •7. Метрические задачи
- •7.1 Определение действительной величины плоского угла но его ортогональным проекциям
- •7.2 Перпендикулярность прямых, прямой и плосксти. Перпендикулярность плоскостей
- •7.2.1 Взаимно перпендикулярные прямые.
- •7.2.2.Взаимно перпендикулярные прямая и плоскость
- •7.2.3. Взаимно перпендикулярные плоскости
- •7.4.2.Параллельность прямой и плоскости
- •7.4.3.Параллельность плоскостей
- •7.5.0Пределение действительной величины отрезка по его ортогональным проекциям
- •7.6.0Пределение расстояния между точкой и прямой. Между двумя параллельными прямыми
- •7.7.Определение расстояния от точки до плоскости, между плоскостями
- •8. Развертки поверхностей. Развертки гранных поверхностей и поверхностей вращения
- •8.1,Способ нормальных сечений
- •8.2.Способ раскатки
- •8.3.Способ триангуляции (способ треугольников)
- •9. Аксонометрические проекции
- •9.1. Общие сведения
- •9.2. Показатели искажения
- •9.3. Стандартные аксонометрические проекции
- •9.3.1. Прямоугольная изометрическая проекция
- •9.3.2. Прямоугольная диметрическая проекция
- •9.3.3. Косоугольные аксонометрические проекции
- •9.4. Аксонометрические проекции окружности
- •9.4.1. Окружность в прямоугольной изометрии
- •9.4.2. Окружность в прямоугольной диметрии
- •9.4.3. Окружность в косоугольной фронтальной диметрии
- •9.5. Примеры построения стандартных аксонометрий
- •10. Машинная графика
- •131 Список литературы
- •132 Содержание
3.3 Взаимопринадлежность точки и прямой плоскости. Прямые особого положения.
Из положения геометрии следует:
1) прямая принадлежит плоскости, если она проходит черездве точки, принадлежащие данной плоскости.
2) прямая принадлежит плоскости, если она проходит через точку, принадлежащую данной плоскости, и параллельна прямой, находящейся в этой плоскости или параллельна ей. Зададим плоскость двумя пересекающимися прямыми АВ и СВ (рис.3.10), плоскость двумя параллельными прямыми DE и FG. Согласно первому положению прямая, пересекающая прямые, определяющие плоскость, находится в данной плоскости. Из этого следует, что если тоскость задана следами, то прямая принадлежит плоскости, если следы прямой находятся на одноименных с ними следах плоскости (рис, 3.11).
25

Рис.3.10


Рис.3.11 Рис.3.12
Плоскости и заданы следами (рис.3.11, 3.12).

Прямая,
проходящая через точки М и N,
пересекает следы плоскостей
и .
Точка М является горизонтальным следом
прямой MN, точка N - фронтальный след
прямой MN и, следовательно, прямая MN
принадлежит плоскости
(рис.3.11) и плоскости
(рис. 3.12).

26
Из рис. 3.13 следует, что прямая принадлежит плоскости,
если она параллельна одному из следов этой плоскости и имеет с другим следом общую точку, которая является одноименным следом этой прямой.
Для построения на чертеже точки, лежащей в заданной плоскости, сначала строят прямую, принадлежащую заданной плоскости, затем на этой прямой берут точку.
Например, требуется найти фронтальную проекцию точки D и известно, что точка D принадлежит плоскости, заданной треугольником АВС (рис. 3,14). Сначала строят горизонтальную проекцию прямой,принадлежащей данной плоскости и проходящей через D'. Затем строят фронтальную проекцию той же прямой (А"М") и на ее продлении находят D".
Среди прямых, принадлежащих плоскости, особое положение занимают горизонтали, фронтали и линии наибольшего наклона к плоскостям проекций.
Г
оризонталями
плоскости называют прямые,
лежагцие в ней и параллельные
горизонтальной плоскости проекций.
Построим горизонталь плоскости, заданной треугольником АВС. Горизонталь построим через вершину А (рис.3.15).
Рис3.14
Рис.3.15 Рис.3.16
Так как горизонталь плоскости параллельна плоскости Н, то ее фронтальная проекция А"К" параллельна оси X, Строим горизонтальную проекцию точки К и проводим прямую через точки А и К.
27
Рассмотрим построение горизонтали плоскости, заданной следами (рис. 3.16).
Горизонтальный след плоскости является одной из ее горизонталей (нулевая горизонталь). Поэтому построение какой -либо из ее горизонталей сводится к проведению в этой плоскости прямой, параллельной горизонтальному следу плоскости.
Горизонтальная проекция горизонтали параллельна горизонтальному следу плоскости; фронтальная проекция горизонтали параллельна оси X.
Фронталями плоскости называют прямые, лежащие в ней и параллельные плоскости проекций V. Пример построения фронтали в плоскости дан на рис.3.17. Построение выполнено
а
налогично

Рис3.17 Рис.3.18
построению горизонтали (см. рис. 3,15), Пусть фронталь проходит через точку А. Так как фронталь параллельна плоскости V, то А'К' параллельна оси X, затем строим фронтальную проекцию К" и фронтальную проекцию фронтали А"К",
Построим фронталь плоскости, заданной следами. Рассматривая рис.3.18 устанавливаем, что прямая MB является фронталью плоскости , она параллельна фронтальному следу (нулевой фронтали) плоскости. Горизонтальная проекция фронтали параллельна оси X, фронтальная проекция фронтали параллельна фронтальному следу плоскости v.
Линиями наибольшего наклона плоскости к плоскостям проекций Н, V, W называются прямые, лежащие в ней, и перпендикулярные или к горизонтали плоскости, или к ее фронтали,
28
или к ее профильной прямой. Линия наибольшего наклона к плоскости Н называется линией ската плоскости,
Эти линии определяют угол наклона плоскости к плоскостями,H,V,W.
Согласно правилам проецирования прямого угла горизонтальная проекция линии ската плоскости перпендикулярна к горизонтальной проекции горизонтали этой плоскости или к ее горизонтальному следу. Фронтальная проекция линии ската строится после построения горизонтальной.

Рис. 3.19 Рис. 3.20
На рис. 3.19 изображена линия ската плоскости : ВК h, BKB' - линейный угол двугранного угла, образованного этой плоскостью и плоскостью Н. Следовательно линия ската служит для определения угла наклона этой плоскости к плоскости Н.
На рис,3,20 построены линии ската в заданных плоскостях.
Линейный угол между линией ската и ее горизонтальной проекцией равен углу наклона заданной плоскости к плоскости Н.
Линейный угол между линией наибольшего наклона к плоскости V и ее фронтальной проекцией равен углу наклона заданой плоскости к плоскости V.
Линейный угол между линией наибольшего наклона к плоскости W и ее профильной проекцией равен углу наклона заданной плоскости к плоскости W.
29
