
- •Министерство образования Российской Федерации
- •Введение
- •В 1798 году французский инженер Гаспар Монж опубликовал свой труд, «Начертательная геометрия» который лег в основу проекционного черчения.
- •1. Виды проецирования
- •1.1. Параллельное проецирование
- •1.3. Проецирование точки на две плоскости проекции
- •1.4. Расположение точек на комплексном чертеже
- •1.5.Проецирование точки на три плоскости проекции
- •2. Проецирование отрезка прямой линии
- •2.1 Проецирование прямой линии на две и три плоскости проекции.
- •2.2.Положение прямой линии относительно плоскостипроекции
- •Прямая, параллельная фронтальной плоскости проекции на-
- •2.3.Взаимное положение двух прямых на комплексном чертеже
- •2.4.Построение на чертеже натуральной величины отрезка прямой общего положения и углов наклона прямой к плоскостям проекций
- •2.5. Точка на прямой. Проецирование прямого угла. Следы прямой.
- •3. Плоскость
- •3.1 Задание и изображение плоскости на чертеже
- •3.2 Следы плоскости
- •3.3 Взаимопринадлежность точки и прямой плоскости. Прямые особого положения.
- •3.4 Положение плоскостей относительно плоскостей проекций
- •2. Если плоскость перпендикулярна к одной из плоскостей
- •3.5.1. Пересечение прямой линии с плоскостью, перпендикулярной к одной или двум плоскостям проекций
- •3.6. Построение линии пересечения двух плоскостей
- •3.7.Пересечение прямой линии с плоскостью общего положения
- •3.8. Пересечение двух плоскостей общего положения
- •3.9. Построение линии пересечения двух плоскостей по точкам пресечения прямых линий с плоскостью
- •4. Способы преобразования чертежа
- •4.1 Способ перемены плоскостей проекций
- •4.1.1. Введение в систему н, V одной дополнительной плоскости проекции
- •4.1.2.Введение в систему h.V двух дополнительных плоскостей проекций
- •4.2.Способ вращения вокруг оси, перпендикулярной к плоскости проекций
- •4.2.1.Вращение вокруг заданной оси
- •4.2.2.Вращение вокруг выбранной оси
- •4.3. Способ параллельного перемещения
- •5.Поверхность. Определение, задание и изображение начертеже. Определитель поверхности. Принадлежность точки и линии поверхности. Построение линии пересечения поверхностей.
- •5.1. Гранные поверхности.
- •Призмы и пирамиды в трех проекциях, точки на поверхности
- •5.2.Поверхсности вращения
- •5.3.Точка и линия на поверхности
- •5.4.0Бщие сведения о способах построения линии взаимного пересечения двух поверхностей
- •5.5.Пересечение поверхностей, когда одна из них проецирующая
- •5.6. Способ вспомогательных секущих плоскостей
- •Рис 5.14
- •5.7.Способ вспомогательных секущих сфер с постоянным центром
- •5.8. Некоторые особые случаи пересечения поверхностей
- •5.8.1. Пересечение поверхностей, описанных вокруг одной сферы
- •6.1.Общие сведения о пересечении поверхности плоскостью.
- •6.2.Пересечение пирамиды с плоскостью
- •6.3. Пересечение призмы с плоскостью
- •6.4. Пересечение цилиндра с плоскостью
- •6.5. Пересечение конуса с плоскостью
- •Рис 6.7
- •6.6. Пересечение сферы с плоскостью
- •6.7. Пересечение тора с плоскостью
- •6.8. Примеры построения чертежей деталей, усеченных проецирующими плоскостями
- •7. Метрические задачи
- •7.1 Определение действительной величины плоского угла но его ортогональным проекциям
- •7.2 Перпендикулярность прямых, прямой и плосксти. Перпендикулярность плоскостей
- •7.2.1 Взаимно перпендикулярные прямые.
- •7.2.2.Взаимно перпендикулярные прямая и плоскость
- •7.2.3. Взаимно перпендикулярные плоскости
- •7.4.2.Параллельность прямой и плоскости
- •7.4.3.Параллельность плоскостей
- •7.5.0Пределение действительной величины отрезка по его ортогональным проекциям
- •7.6.0Пределение расстояния между точкой и прямой. Между двумя параллельными прямыми
- •7.7.Определение расстояния от точки до плоскости, между плоскостями
- •8. Развертки поверхностей. Развертки гранных поверхностей и поверхностей вращения
- •8.1,Способ нормальных сечений
- •8.2.Способ раскатки
- •8.3.Способ триангуляции (способ треугольников)
- •9. Аксонометрические проекции
- •9.1. Общие сведения
- •9.2. Показатели искажения
- •9.3. Стандартные аксонометрические проекции
- •9.3.1. Прямоугольная изометрическая проекция
- •9.3.2. Прямоугольная диметрическая проекция
- •9.3.3. Косоугольные аксонометрические проекции
- •9.4. Аксонометрические проекции окружности
- •9.4.1. Окружность в прямоугольной изометрии
- •9.4.2. Окружность в прямоугольной диметрии
- •9.4.3. Окружность в косоугольной фронтальной диметрии
- •9.5. Примеры построения стандартных аксонометрий
- •10. Машинная графика
- •131 Список литературы
- •132 Содержание
9.4. Аксонометрические проекции окружности
Окружность в аксонометрической проекции представляет собой эллипс, Построение эллипса сравнительно сложно, поэтому его заменяют овалом. Овал - это кривая, по очертанию похожая на эллипс, но строится при помощи циркуля.
9.4.1. Окружность в прямоугольной изометрии
Окружности, вписанные в грани куба ( рис 9.6а ), проецируются в эллипсы, В прямоугольной изометрии все три эллипса одинаковы по форме, равны друг другу, но расположены различно (рис 9.6.б) . Их малые оси всегда располагаются по направлению отсутствующей в данной плоскости аксонометрической оси, а большая ось к ней перпендикулярна.
Большая ось=1,22D
117
Существует несколько способов построения окружности в
изометрической проекции.
Первый
способ.
Строят ромб со стороной, равной D
окружности. Точки А и В - центры больших
дуг радиуса
R,
Точки С и Е - центры малых дуг радиуса
г. Точки 1, 2, 3. 4 - точки сопряжения дуг
(рис 9.7а ).
Второй способ. Проводят две окружности, одна - диаметром, равнымбольшой оси овала (АВ = 1,22 D), вторая - диаметром, равным малой оси (СЕ = 0,71 D). Точки OiиOi -центры больших дуг овала, а точки Оз и 04 - центры малых дуг. Точки 1,2,3, 4 - точки сопряжения дуг (|рис 9.7i, б).
Н
б
Рис.9.9
118
9.4.2. Окружность в прямоугольной диметрии
В прямоугольной диметрической проекции так же, как в прямоугольной изометрии, малые оси всех трех эллипсов расположены по направлению той аксонометрической оси, которая отсутствует в плоскости, содержащей эллипс.
На рис.9.9 показаны эллипсы, принадлежащие отдельнмм координатным плоскостям, и указаны размеры их осей. У эллипса, расположенного в плоскости x'0'z',большая ось равна 1,06 D., малая - 0,94 D.
Эллипсы, принадлежащие координатным плоскостям xОyиz'Oy'по величине и форме одинаковы. Большие оси этих эллипсов равны 1,06 D,малые - 0,35 D.
На риc.9.9 дано построение диметрического овала для окружности диаметра D, расположенной в плоскости x'Oz
Рис 9.9
На рис.9.10 приведено построение диметрических овалов, заменяющих эллипсы, для окружностей, расположенных в плоскостях Н и W, Эти овалы одинаковы по форме и величине. Малая ось имеет направление той аксонометрической оси, которая отсутствует в плоскости, содержащей эллипс, большая ось к ней перпендикулярна.
Рис 9.10
19
Последовательность построения такая (рис 9.11, а): от центра О' на продолжении малой оси эллипса откладываем размер 1,06 D (величину большой оси). Получаем точку O1- центр нижней дуги радиуса R, Из точки О2 этим же радиусом проводим верхнюю дугу овала. От точек А и В откладываем размеры малой оси, уменьшенной в четыре раза, т.е. EF / 4. Из полученных центров Оз, О4 проводим дуги радиуса R1= O'E/2. Точки сопряжения 5 и 6 находим, соединяя прямой точки O1 и О4(О2 и О4) и
продолжая эту прямую до пересечения с дугой.
Построение овала в плоскости W (рис 9.11 б) аналогично построению овала в плоскости Н.
а Рис.9.11
120