
- •Министерство образования Российской Федерации
- •Введение
- •В 1798 году французский инженер Гаспар Монж опубликовал свой труд, «Начертательная геометрия» который лег в основу проекционного черчения.
- •1. Виды проецирования
- •1.1. Параллельное проецирование
- •1.3. Проецирование точки на две плоскости проекции
- •1.4. Расположение точек на комплексном чертеже
- •1.5.Проецирование точки на три плоскости проекции
- •2. Проецирование отрезка прямой линии
- •2.1 Проецирование прямой линии на две и три плоскости проекции.
- •2.2.Положение прямой линии относительно плоскостипроекции
- •Прямая, параллельная фронтальной плоскости проекции на-
- •2.3.Взаимное положение двух прямых на комплексном чертеже
- •2.4.Построение на чертеже натуральной величины отрезка прямой общего положения и углов наклона прямой к плоскостям проекций
- •2.5. Точка на прямой. Проецирование прямого угла. Следы прямой.
- •3. Плоскость
- •3.1 Задание и изображение плоскости на чертеже
- •3.2 Следы плоскости
- •3.3 Взаимопринадлежность точки и прямой плоскости. Прямые особого положения.
- •3.4 Положение плоскостей относительно плоскостей проекций
- •2. Если плоскость перпендикулярна к одной из плоскостей
- •3.5.1. Пересечение прямой линии с плоскостью, перпендикулярной к одной или двум плоскостям проекций
- •3.6. Построение линии пересечения двух плоскостей
- •3.7.Пересечение прямой линии с плоскостью общего положения
- •3.8. Пересечение двух плоскостей общего положения
- •3.9. Построение линии пересечения двух плоскостей по точкам пресечения прямых линий с плоскостью
- •4. Способы преобразования чертежа
- •4.1 Способ перемены плоскостей проекций
- •4.1.1. Введение в систему н, V одной дополнительной плоскости проекции
- •4.1.2.Введение в систему h.V двух дополнительных плоскостей проекций
- •4.2.Способ вращения вокруг оси, перпендикулярной к плоскости проекций
- •4.2.1.Вращение вокруг заданной оси
- •4.2.2.Вращение вокруг выбранной оси
- •4.3. Способ параллельного перемещения
- •5.Поверхность. Определение, задание и изображение начертеже. Определитель поверхности. Принадлежность точки и линии поверхности. Построение линии пересечения поверхностей.
- •5.1. Гранные поверхности.
- •Призмы и пирамиды в трех проекциях, точки на поверхности
- •5.2.Поверхсности вращения
- •5.3.Точка и линия на поверхности
- •5.4.0Бщие сведения о способах построения линии взаимного пересечения двух поверхностей
- •5.5.Пересечение поверхностей, когда одна из них проецирующая
- •5.6. Способ вспомогательных секущих плоскостей
- •Рис 5.14
- •5.7.Способ вспомогательных секущих сфер с постоянным центром
- •5.8. Некоторые особые случаи пересечения поверхностей
- •5.8.1. Пересечение поверхностей, описанных вокруг одной сферы
- •6.1.Общие сведения о пересечении поверхности плоскостью.
- •6.2.Пересечение пирамиды с плоскостью
- •6.3. Пересечение призмы с плоскостью
- •6.4. Пересечение цилиндра с плоскостью
- •6.5. Пересечение конуса с плоскостью
- •Рис 6.7
- •6.6. Пересечение сферы с плоскостью
- •6.7. Пересечение тора с плоскостью
- •6.8. Примеры построения чертежей деталей, усеченных проецирующими плоскостями
- •7. Метрические задачи
- •7.1 Определение действительной величины плоского угла но его ортогональным проекциям
- •7.2 Перпендикулярность прямых, прямой и плосксти. Перпендикулярность плоскостей
- •7.2.1 Взаимно перпендикулярные прямые.
- •7.2.2.Взаимно перпендикулярные прямая и плоскость
- •7.2.3. Взаимно перпендикулярные плоскости
- •7.4.2.Параллельность прямой и плоскости
- •7.4.3.Параллельность плоскостей
- •7.5.0Пределение действительной величины отрезка по его ортогональным проекциям
- •7.6.0Пределение расстояния между точкой и прямой. Между двумя параллельными прямыми
- •7.7.Определение расстояния от точки до плоскости, между плоскостями
- •8. Развертки поверхностей. Развертки гранных поверхностей и поверхностей вращения
- •8.1,Способ нормальных сечений
- •8.2.Способ раскатки
- •8.3.Способ триангуляции (способ треугольников)
- •9. Аксонометрические проекции
- •9.1. Общие сведения
- •9.2. Показатели искажения
- •9.3. Стандартные аксонометрические проекции
- •9.3.1. Прямоугольная изометрическая проекция
- •9.3.2. Прямоугольная диметрическая проекция
- •9.3.3. Косоугольные аксонометрические проекции
- •9.4. Аксонометрические проекции окружности
- •9.4.1. Окружность в прямоугольной изометрии
- •9.4.2. Окружность в прямоугольной диметрии
- •9.4.3. Окружность в косоугольной фронтальной диметрии
- •9.5. Примеры построения стандартных аксонометрий
- •10. Машинная графика
- •131 Список литературы
- •132 Содержание
4.2.Способ вращения вокруг оси, перпендикулярной к плоскости проекций
При вращении вокруг некоторой, неподвижной прямой i (ось вращения) каждая точка вращаемой фигуры перемещается в плоскости, перпендикулярной к оси вращения (плоскость вращения). При этом точка перемещается по окружности, центр которой находится в точке пересечения оси с плоскостью вращения (ценmр вращения). Радиус окружности равняется расстоянию от вращаемой точки до центра (это радиус вращения). Если какая-либо точка данной системы находится на оси вращения i, то при вращении системы эта точка считается неподвижной. Ось вращения может быть, задана и выбрана. Если ось вращения выбирается, то ее выгодно располагать перпендикулярно к одной из плоскостей проекций, так как при этом упрощаются построения.
4.2.1.Вращение вокруг заданной оси
Рис.4.9 Рис.4.10
Пусть точка А вращается вокруг оси i, перпендикулярной к плоскости Н (рис.4.9). При вращении точка А описывает окружность радиуса R, плоскость которой находится в плоскости и перпендикулярна к плоскости V, а, следовательно, параллельна плоскости Н Величина радиуса R выражается длиной перпендикуляра, проведенного из точки А на ось вращения. Окружность, описанная в пространстве точкой А, проецируется на плоскость Н без искажения, Так как плоскость а перпендикулярна к V, то проекции точек окружности на плоскость V расположатся на v" , т.е. на прямой, перпендикулярной к фронтальной проекции
46
оси вращения. Нарис.4.9 справа: окружность, описанная точкой А при вращении ее вокруг оси i, спроецирована без искажения на плоскость Н. Из центра О проведена окружность радиуса R=OA. На плоскость V эта окружность спроецировалась в виде отрезка прямой, равного 2R,
На рис,4.10 изображено вращение точки А вокруг оси i, перпендикулярной к плоскости V. Окружность, описанная точкой А, спроецирована без искажения на плоскость V. Из точки О проведена окружность радиуса R==OA". На плоскости Н эта окружность изображена отрезком прямой, равным 2R.
Из этого следует, что при вращении точки вокруг оси, перпендикулярной к какой-нибудь из плоскостей проекций, одна из проекций вращаемой точки перемещается по прямой, перпендикулярной к проекции оси вращения.
4.2.2.Вращение вокруг выбранной оси
В ряде случаев ось вращения может быть выбрана. При этом, если ось вращения выбрать проходящей через один из концов отрезка, то построение упрощается, так как точка,, через которую проходит ось, будет неподвижной и для поворота отрезка необходимо будет построить новое положение проекции только одной точки - другого конца отрезка.
Рис.4.11 Рис.4.12
На рис. 4.11 необходимо определить натуральную величину отрезка АВ и угол наклона его к плоскости Н. Ось вращения i выбрана перпендикулярно к плоскости Н и проходит через точку А. Поворачивая отрезок АВ вокруг оси i переводим его в положение,
47
параллельное плоскости V (т.е. АВ становится фронталью). Величина А В равна натуральной величине отрезка АВ, а угол А//В//В// равен углу наклона отрезка АВ к плоскости Н.
Аналогично определяется натуральная величина отрезка CD и угол наклона его к плоскости V (рис.89). Ось вращения i выбрана перпендикулярно к плоскости V и проходит через точку С. Поворачивая отрезок CD вокруг оси i переводим его в положение, параллельное плоскости Н (т.е. CD становится горизонталью). Величина С D равна натуральной величине отрезка CD и угол С/D равен углу наклона отрезка CD к плоскости V.
Рис.4.13
На рис 4.13 необходимо определить натуральный вид треугольника АВС и угол наклона его к плоскости Н. Т.к.. плоскость треугольника АВС является плоскостью общего положения, то данную задачу решаем по схеме:
1 Вращением вокруг оси i , перпендикулярной к плоскости Н и проходящей через точку С, переводим треугольник АВС из общего положения в положение фронтально - проецирующей плоскости.
48
2.Вращением вокруг оси i1, перпендикулярной к плоскости V и проходящей через точку А, переводим треугольник АВС из положения фронтально- проецирующей плоскости в положение плоскости, параллельной плоскости Н.
Для того, чтобы треугольник АВС перевести в положение фронтально- проецирующей плоскости, в плоскости треугольника АВС проводим горизонталь плоскости СК, Ее фронтальная проекция С//К//параллельна оси X. Горизонтальная проекция С/К/ равна натуральной величине отрезка СК. Ось вращения i выбираем перпендикулярно Н и проводим через точку С, Плоскость АВС становится в положение фронтально- проецирующей плоскости, если горизонталь данного треугольника (СК) займет положение, перпендикулярное к плоскости V и, следовательно, отрезок СК станет перпендикулярен к оси X, а фронтальная проекция С//К//проецируется в точку. Из центра i/С/радиусом, равным С/К/, проводим дугу и строим новую проекцию К .Т.к. при вращении любой точки вокруг оси, перпендикулярной к плоскости проекций, траектория перемещения точки расположена в плоскости, перпендикулярной к оси вращения, то проекция К//расположена на прямой К//К//, параллельной оси X.
Методом засечек находим В/и А/. Фронтальная проекция В'' лежит на прямой В//В//и параллельной оси X,фронтальная проекция А/лежит на прямой А/А/, параллельной оси X. В результате данного вращения плоскость АВС стала фронтально проецирующей и угол (р равен углу наклона плоскости АВС к плоскости Н.
Ось вращения i1выбираем перпендикулярно V и проводим через точку А . Вращаем точку К и точку С радиусом А К , точку В радиусом А В до тех пор, пока плоскость АВС не займет положение, параллельное плоскости Н и, следовательно, отрезок А1//К1//В1//параллелен оси ОХ. Т.к. траектории перемещения точек С ,В и К при этом на горизонтальную плоскость Н с проецировалась в прямые, параллельные
оси X,. то
С/лежит на прямой С/С/,
В/1 лежит на прямой В/В/1,
К/1лежит на прямой К/К/1.
Проекция A/B/C/определяет натуральный вид треугольника АВС.
49