Скачиваний:
112
Добавлен:
22.01.2014
Размер:
97.79 Кб
Скачать

ЛЕКЦИЯ 4. Особые точки и фазовые портреты нелинейных систем.

План.

  1. Уравнения нелинейной системы.

  2. Условия для определения положений равновесия.

  3. Исследование характера особых точек. Метод изоклин.

  4. Устойчивый и неустойчивый предельные циклы.

  5. Общие особенности процессов в нелинейных системах. Автоколебания системы.

Рассмотрим фазовые траектории нелинейной системы второго порядка

Особые точки, отвечающие равновесным состояниям си­стемы, определяются из условия

Для выявления типа каждой особой точки уравнения (1.16) линеаризуются при малых отклонениях координат в окрестности особой точки. Затем определяются корни характеристического уравнения линеаризованной системы, по которым, согласно лекции 3, и устанавливается тип осо­бой точки.

Проведем рассмотрение этого вопроса на примере. Пусть заданы уравнения нелинейной системы

Уравнение фазовых траекторий имеет вид

Найдем особые точки согласно условиям (1,17)

откуда получаем три решения:

1) х=0, у=0,

2) x=1, у= -1,

3) х= -1, у=1.

Следовательно, система имеет три возможных равновес­ных состояния.

Исследуем характер особых точек.

1. В окрестности точки х = 0, у = 0 линеаризован­ные уравнения имеют вид

Характеристическое уравнение:

Корни 1,2 =±j — чисто мнимые. Следовательно, это особая точка типа «центр».

2. В окрестности точки х = 1, у= -1 вводим малые отклонения в координатах =х-1, =у+1. Под­ставляя в уравнения (1.18) х=+1, у=-1 и от­брасывая нелинейные члены, получим линеаризованную систему

.

Характеристическое уравнение имеет вид

Корни характеристического уравнения

вещественны и имеют разные знаки. Следовательно, это особая точка типа «седло».

3. Рассматривая линеаризованную систему в окрест­ности точки х =-1, у=1, подстановкой в уравнение (1.18) х=-1, у=+1 приходим к тому же урав­нению, что и в предыдущем случае. Следовательно, здесь тоже особая точка типа «седло».

Найдем асимптоты фазовых траекторий в седловых точках. Положив =k,, из уравнения фазовых траекторий

получим

или

откуда находим

Рис. 1.24.

На рис. 1.24 эти асимптоты показаны в окрестностях соответствующих особых точек. Точка же (0, 0) типа «центр» должна быть окружена замкнутыми кривыми. Исходя из этого, на рис. 1.25 изображен примерный ход фазовых траекторий на всей плоскости.

Для определения направления движения изображаю­щей точки по фазовым траекториям достаточно исследо­вать какую-либо одну точку. Возьмем, например, точку х = 0, у = 1. Согласно уравнениям (1.18) в этой точке имеем dx/dt = -2, dу/dt = 1, т. е. х изменяется в сторо­ну уменьшения, а у- в сторону увеличения. В соответ­ствии с этим и поставлена стрелка па фазовой траекто­рии, проходящей через точку (О, 1), а так как система непрерывна, в ту же сторону будут направлены и все соседние фазовые траектории.

Таким образом выясняется качественная картина фа­зовых траекторий. Отметим, что в данном примере ни одно из трех возможных равновесных состояний системы не является устойчивым.

Рис. 125.

Методом изоклин можно уточнить очертания фазовых траекторий. Уравнение изоклины, согласно (1.19), имеет

вид

где с—крутизна наклона (dy/dx) пересекающих изокли­ну фазовых траекторий. Например, значению с = 1, т. о. углу наклона траекторий, равному 45°, соответствует, согласно (1.20), изоклина, описываемая уравнением

Она проходит через все три особые точки (штриховая линия на рис. 1.25). В отличие от линейных систем, здесь изоклина криволинейная.

Отметим теперь некоторые общие особенности процес­сов в нелинейных системах.

Рис. 1.26.

Прежде всего, это возможность наличия двух пли нескольких равновесных состоя­ний (особых точек), как уже было видно на приведен­ном примере. В соответствии с этим на фазовой плоскости получаются области с различными типами фазовых тра­екторий. На рис. 1.25, например, эти области разделены жирно обозначенными кривыми. Такие особые кривые, разделяющие области с разными типами фазовых траек­торий, называются сепаратрисами.

Существуют и другого типа особые кривые. Важным типом особых кривых являются предельные циклы — замкнутые кривые, соответствующие периодическим про­цессам, в окрестности которых имеют место колебатель­ные переходные процессы. Если эти фазовые траектории

Рис. 1.27.

изнутри и снаружи сходятся к данному предельному циклу (рис. 1.26, а), то мы имеем устойчивый предельный цикл. Если же они удаляются в обе стороны (рис. 1.26, б),— неустойчивый предельный цикл. Возмо­жен и случай двух предельных циклов (рис. 1.26,в), из которых один устойчивый (в данном случае внешний), а второй неустойчивый.

Особая точка О на рис. 1.26 представляет собой в пер­вом случае неустойчивое равновесное состояние, а во втором и третьем — устойчивое. Картина процессов во времени, соответствующая рис. 1.26, а, б, изображена на рис. 1.27, а, б.

Физический смысл устойчивого периодического про­цесса, отвечающего предельному циклу,— автоколебания системы. Это собственные периодические колебания, про­исходящие при отсутствии внешнего периодического воздействия, причем амплитуда и частота автоколебаний не зависит от начальных условий, а определяется внут­ренними свойствами системы. Автоколебания могут воз­никать только в нелинейных системах. Что же касается линейных систем, то в них собственные периодические колебания возможны только на границе устойчивости (1,2 =±j), причем амплитуда их определяется на­чальными условиями (см. рис. 1.23).

Физический смысл неустойчивого предельного цикла совсем иной. Как видно из рис. 1.26, б, неустойчивый предельный цикл — это граница областей начальных ус­ловий. При начальных условиях х(to), у(to), лежащих внутри неустойчивого предельного цикла, получается за­тухающий переходный процесс, если же они лежат сна­ружи — расходящийся. Следовательно, равновесное состо­яние О в данном случае устойчиво при небольших на­чальных отклонениях, а при больших — система неус­тойчива. Говорят: система устойчива «в малом» и неус­тойчива «в большом».

Здесь важно отметить, что, в отличие от линейных систем, типы динамических процессов нелинейных си­стем могут существенно зависеть от начальных условий.

Интересно далее отметить, что в первом случае (рис. 1.26, а) единственным устойчивым установившимся состоянием системы является автоколебательный режим. Во втором случае (рис. 1.26, б)—равновесное состояние О. В третьем же случае система имеет два устойчивых установившихся состояния: равновесное О, и автоколеба­ния с большой амплитудой (внешний предельный цикл). Какой из них установится, зависит от начальных условий.

В первом случае говорят, что имеет место «мягкое возбуждение» автоколебаний (т. е. при любых начальных условиях), а в третьем случае—«жесткое возбуждение» автоколебаний, так как, чтобы система вышла на них, не­обходимо начальные условия «забросить» за пределы внутреннего неустойчивого предельного цикла.

Все это будет проиллюстрировано в последующих гла­вах на примерах систем автоматического регулирования. Кроме того, будут проиллюстрированы и многие другие особые свойства нелинейных систем, как, например, от­резки равновесия, скользящие процессы, а также особен­ности, связанные с вынужденными колебаниями и с про­цессами управления, в которых, в отличие от линейных систем, не соблюдается принцип суперпозиции.