
- •Министерство образования и науки Российской Федерации
- •Содержание
- •Введение
- •1. Современное состояние проблемы моделирования систем
- •1.1. Моделирование как метод научного познания. Философские аспекты моделирования
- •1.2. Использование моделирования при исследовании и проектировании систем
- •1.2.1. Особенности разработки систем
- •1.2.2. Особенности использования моделей
- •1.2.3. Перспективы развития методов и средств моделирования систем
- •2. Основные понятия теории моделирования систем
- •2.1. Принцип системного подхода в моделировании систем
- •2.1.1. Структура системы – совокупность связей между элементами системы
- •2.1.2. Экспериментальные исследования систем
- •2.2. Стадии разработки моделей
- •2.3. Понятие подобия
- •2.3.1. Общие положения
- •2.3.2. Основные понятия теории размерности
- •2.3.3. Примеры подобия
- •2.4. Общая характеристика проблемы моделирования систем
- •2.4.1. Объект моделирования.
- •2.4.2. Характеристики моделей систем
- •2.4.3. Цели моделирования систем
- •2.5. Классификация видов и методов моделирования систем
- •2.5.1. Классификационные признаки
- •2.5.2. Математическое моделирование.
- •2.6. Построение модели
- •2.7. Разработка вычислительного метода
- •2.8. Проверка (тестирование) модели
- •3. Математическое моделирование
- •3.1. Задачи и цели исследования математических моделей
- •3.2. Методология математического моделирования. Системный анализ
- •3.2.1. Понятие системы
- •3.2.2. Этапы системного анализа и декомпозиция
- •3.2.3. Экспертные оценки
- •3.3. Классификация математических моделей
- •3.4. Методы формализованного описания системы
- •3.4.1. Математическая модель по “входу-выходу”
- •3.4.2. Математическая модель в пространстве состояний
- •3.4.3. Описание линейных систем в пространстве состояний
- •3.4.4. Реализация систем в пространстве состояний
- •3.5. Методы построения математических моделей и их применение в сапр
- •3.5.1. Методы построения математических моделей
- •3.5.2. Математические модели с точки зрения сапр
- •3.5.4. Методика составления уравнений динамики элементов сау
- •3.6. Математические модели системы управления. Понятие об оптимальном управлении
- •4. Экспериментальное определение динамических характеристик объектов моделирования
- •4.1. Понятие о динамических характеристиках объектов
- •4.2. Определение динамических характеристик элементов систем по временным характеристикам
- •4.2.1. Определение статических характеристик
- •4.2.2. Определение динамических характеристик объектов с помощью периодических воздействий
- •4.4.1. Временные характеристики и их свойства
- •4.4.2. Определение характеристик апериодического звена
- •4.4.3. Определение характеристик колебательного звена
- •4.3. Формы описания динамических свойств объектов
- •4.4. Синтез пассивных двухполюсников и четырехполюсников
- •4.3.1. Разложение передаточной функции активного четырехполюсника
- •4.3.2. Способы синтеза двухполюсников
- •4.5. Экспериментальная отработка характеристик системы управления движущимся объектом
- •4.5.1. Общие положения
- •4.5.2. Алгоритмы обработки внешнетраекторных измерений
- •5. Динамические свойства воспринимающих элементов и датчиков
- •5.1. Основные определения и понятия
- •5.1.1. Понятие датчика
- •5.1.2. Классификация датчиков
- •5.2. Основные характеристики датчиков
- •5.2.1. Погрешности измерений
- •5.2.2. Чувствительность датчиков
- •5.2.3. Быстродействие датчика
- •5.3. Схемы формирования сигналов пассивных датчиков
- •5.3.1. Общие характеристики
- •5.4. Оптические датчики
- •5.4.1. Определения и основные зависимости
- •5.4.2. Фоторезисторы
- •5.4.3. Фотодиоды
- •5.4.4. Тепловые приемники излучения
- •5.4.5. Датчики изображения
- •5.4.6. Волоконная оптика
- •5.5. Датчики температуры
- •5.5.1. Методы измерения температуры
- •5.6. Датчики положения и перемещения
- •5.6.1. Методы определения положения и перемещения
- •5.6.2. Резисторные потенциометры
- •5.6.3. Индуктивные датчики
- •5.6.4. Емкостные датчики
- •5.6.5. Цифровые датчики
- •5.6.6. Датчики близости
- •5.7. Датчики деформации
- •5.7.1. Основные определения
- •5.7.2. Основные положения
- •5.8. Тахометрические датчики
- •5.8.1. Электродинамическая тахометрия
- •5.8.2. Импульсная тахометрия
- •5.8.3. Гирометры
- •5.9. Датчики ускорения, вибрации и удара
- •5.9.1. Общие положения
- •5.9.2. Принцип действия сейсмических датчиков
- •5.10. Датчики скорости, расхода и уровня жидкости
- •5.10.1. Элементарные понятия
- •5.10.2 Датчики и методы измерения скорости жидкости
- •5.10.3. Измерение расхода жидкости
- •5.10.4. Измерение и указание уровня жидкости
- •5.11. Датчики влажности
- •5.11.1. Определения
- •5.11.2. Гигрометры
- •5.12. Акустические датчики
- •5.12.1. Распространение плоской волны
- •5.12.2. Распространение трехмерной волны
- •5.12.3. Микрофоны
- •5.12.4. Измерение интенсивности
- •6. Основы технологии имитационного моделирования
- •6.1. Основные определения и понятия
- •6.2. Область применения и классификация имитационных моделей
- •6.3. Описание поведения системы
- •6.3.1. Общие положения.
- •6.3.2. Методика моделирования случайных факторов
- •6.3.3. Два подхода к моделированию случайных чисел
- •6.4. Оценка качества псевдослучайных чисел
- •6.5. Оценка качества имитационного моделирования
- •7. Методы испытаний систем управления и их применение в системах автоматизированного проектирования (сапр)
- •7.1. Полунатурное моделирование
- •7.1.1. Общие положения
- •7.1.2. Автоматизация испытаний на основе полунатурного моделирования
- •8. Анализ систем управления с эвм
- •8.1. Основные задачи
- •8.2. Особенности систем управления с эвм
- •8.2. Основные положения из теории дискретных линейных систем
- •8.2.1. Последовательности
- •8.2.2. Линейные системы с постоянными параметрами
- •8.2.3. Разностные уравнения
- •8.2.3.1. Решение разностных уравнений методом прямой подстановки
- •8.3. Расчет цифровых фильтров по фильтрам непрерывного времени
- •8.3.1 Методика синтеза цифровых фильтров. Общие положения
- •8.3.2 Методы дискретизации аналоговых фильтров
- •8.3.3. Геометрическая интерпретация методов расчета цифровых фильтров по фильтрам непрерывного времени
- •9. Моделирование свойств объектов с помощью системыMatLab
- •9.1. Введение
- •9.2. MatLab как научный калькулятор
- •9.2.1. Командное окно
- •9.2.2. Операции с числами
- •9.2.3. Простейшие операции с векторами и матрицами
- •9.2.4. Некоторые функции прикладной численной математики
- •9.2.5. Построение простейших графиков
- •9.3. Исследование линейных стационарных систем (лсс)
- •9.3.1. Классы пакета control.L
- •9.3.2. Ввод и преобразование моделей
- •Пример создания модели
- •9.3.3. Анализ системы
- •9.4. Моделирование динамических процессов с помощью подсистемы MatLab simulink
- •9.4.1. Краткие сведения о подсистеме MatLab simulink
- •9.4.2. Запуск подсистемы simulink
- •9.4.3. Создание модели
- •9.4.4. Некоторые основные приемы подготовки и редактирования модели
- •9.4.5. Установка параметров моделирования и его выполнение
- •9.2.2. Результат составления модели
- •Приложения п1. Динамические характеристики объектов моделирования
- •П2. Примеры составление функциональной и структурной схемы динамической системы
- •П2.1. Система управления угловой скорости вращения ротора двигателя при условии действия постоянного возмущения
- •П2.2. Система сопровождения цели
- •П2.3. Система автоматического наведения летательного аппарата на объект
- •П2.4. Система управления уровнем жидкости
- •П2.5. Система управления экономическими параметрами
- •Использованные источники
- •Основы теории и практики моделирования динамических систем
2.5. Классификация видов и методов моделирования систем
2.5.1. Классификационные признаки
Классификация видов моделирования представлена ниже.
Первый признак классификации видов моделирования – это степень полноты модели. Условная схема такой классификации приведена на рисунке 2.1.
Особенности того или иного вида моделирования наглядно демонстрируется таблицей 2.1.
Таблица 2.1. Виды моделирования и их особенности
Виды моделирования |
Отличительные особенности вида моделирования |
Детерминированное |
Отображает процессы, в которых отсутствуют случайные воздействия |
Стохастическое |
Отображает вероятностные (стохастические) процессы и события |
Статическое |
Служит для описания поведения объекта в какой-либо момент времени |
Динамическое |
Отображает поведение объекта во времени |
Дискретное |
Для описания процессов, которые предполагаются дискретными |
Непрерывное |
Отражает непрерывные процессы |
Дискретно-непрерывное |
Отражает как дискретные, так и непрерывные процессы |
Мысленное |
Часто является единственным способом моделирования объектов, которые либо практически нереализуемы в заданном интервале времени, либо существуют вне условий, возможных для их физического создания |
Наглядное |
Отображает явления и процессы, протекающие в объекте |
Гипотетическое |
Закладывается гипотеза о закономерностях протекания процесса в реальных объектах |
Аналоговое |
Применяются аналоги различных уровней |
Макетирование |
Применяется в случаях, когда протекающие в реальных объектах процессы не поддаются физическому моделированию, либо могут предшествовать проведению других видов моделирования |
Знаковое |
Отображение понятий с помощью знаков, описание какого-то реального объекта в отдельных символах |
Языковое |
В основе лежит некоторый тезаурус – словарь, который очищен о неоднозначности, т.е. в нем каждому слову может соответствовать лишь единственное понятие |
Символическое |
Искусственный процесс создания логического объекта |
Наиболее общая схема классификации видов моделирования представлена на рисунке 2.2.
Применение того или иного вида и/или метода моделирования определяется в каждом конкретном случае в зависимости от исследуемой системы.
Дадим характеристики отдельных основных видов и методов моделирования подробнее.
2.5.2. Математическое моделирование.
Для исследования характеристик процесса функционирования любой системы S математическими методами должна быть проведена формализация этого процесса, т.е. построена математическая модель.
Под математической моделью понимается процесс установления соответствия данному реальному объекту некоторого математического объекта, называемого математической моделью, и исследование этой модели, позволяющей получить характеристики реального объекта.
Отличают математические модели аналитические, имитационные и комбинированные.
Аналитические модели – это процессы функционирования элементов системы записываются в виде некоторых функциональных соотношений (алгебраических, интегро-дифференциальных, конечно-разностных и др.) или логических соотношений.
Аналитическая модель может быть исследована следующими методами:
аналитическим, при котором в общем виде получают явные зависимости для исследования характеристик);
численным, при котором не умея решать уравнений в общем виде, стремятся получить числовые результаты при конкретных начальных данных;
качественным, при котором не имея значения в явном виде, можно найти некоторые свойства решения (например, оценить устойчивость решения).
Имитационное моделирование – наиболее эффективный метод исследования больших систем.
При таком моделировании алгоритм воспроизводит процесс функционирования системы S во времени, причем имитируются элементарные явления, составляющие процесс, с сохранением их логической структуры и последовательности протекания во времени.
В процессе имитационного моделирования происходит воспроизведение процессов, объектов или явлений с имитацией случайными величинами и случайными процессами динамических свойств звеньев оригиналов, которые не удается представить определенными математическими зависимостями.
Метод статистического моделирования – метод машиной реализации имитационной модели, а метод статистических испытаний (метод Монте-Карло) – это численный метод решения аналитической задачи.
Комбинированное моделирование объединяет достоинства аналитического и имитационного моделирования.
В целом можно сказать, что при математическом моделировании в качестве объекта оригинала выступают исходные уравнения, представляющие математическую модель объекта. А в качестве модели – сами процессы, протекающие в соответствии с этими уравнениями, которые воспроизводятся или аналитически, или на ЭВМ (ЦВМ) в виде машинных решений.
При математическом моделировании наряду с ЭВМ также достаточно широко используются аналоговые вычислительные машины (АВМ) как консольные или терминальные устройства на рабочих местах разработчиков и испытателей.
Реальное моделирование
Реальное моделирование –это исследование различных характеристик системы либо на реальном объекте целиком, либо на его части.
Натурное моделирование
Это проведение исследования на реальном объекте с последующей обработкой результатов эксперимента на основе теории подобия.
Производственный эксперимент и комплексные испытания
Они обладают высокой степенью достоверности.
Научный эксперимент
Научный эксперимент характеризуется широким использованием средств автоматизации проведения, применения разнообразных средств обработки информации, возможностью вмешательства человека в процесс эксперимента.
Физическое и геометрическое моделирование
Оно отличается от натурного тем, что исследование проводится на установках, которые сохраняют природу явлений и обладают физическим и геометрическим подобием.
При физическом и геометрическом моделировании необходимо иметь набор правил и условий, выполнение которых обеспечивает требуемую точность изучения заданного объекта по его модели.
В частности, это требование условий обеспечения подобия объекта–модели и объекта-оригинала. Объекты считаются подобными. если характеристики процесса. происходящие в какой-либо из них отличаются от соответствующих характеристик другого объекта вполне определенными и постоянными для данного процесса коэффициентами.
В общем случае модель изучаемого объекта может быть иной физической природы, отличной от природы оригинала.
Полунатурное моделирование
Особое место в моделировании систем занимает полунатурное моделирование. Оно отличается тем, что при нем в систему подключается реальная аппаратура, элементы которой необходимо исследовать совместно с моделью остальной части системы, реализованной на ЭВМ.
(Например, контур слежения в системах теленаведения с подключением реального пульта управления в виде джойстика).
При полунатурном моделировании систем управляемых объектов возникает необходимость моделирования в реальном масштабе времени.
Целью при этом является определение влияния кинематики и динамики устройств САУ на работу САУ в целом. При этом ряд элементов этой САУ не поддаются математическому описанию и аппаратурной реализации.