
- •Министерство образования и науки Российской Федерации
- •Содержание
- •Введение
- •1. Современное состояние проблемы моделирования систем
- •1.1. Моделирование как метод научного познания. Философские аспекты моделирования
- •1.2. Использование моделирования при исследовании и проектировании систем
- •1.2.1. Особенности разработки систем
- •1.2.2. Особенности использования моделей
- •1.2.3. Перспективы развития методов и средств моделирования систем
- •2. Основные понятия теории моделирования систем
- •2.1. Принцип системного подхода в моделировании систем
- •2.1.1. Структура системы – совокупность связей между элементами системы
- •2.1.2. Экспериментальные исследования систем
- •2.2. Стадии разработки моделей
- •2.3. Понятие подобия
- •2.3.1. Общие положения
- •2.3.2. Основные понятия теории размерности
- •2.3.3. Примеры подобия
- •2.4. Общая характеристика проблемы моделирования систем
- •2.4.1. Объект моделирования.
- •2.4.2. Характеристики моделей систем
- •2.4.3. Цели моделирования систем
- •2.5. Классификация видов и методов моделирования систем
- •2.5.1. Классификационные признаки
- •2.5.2. Математическое моделирование.
- •2.6. Построение модели
- •2.7. Разработка вычислительного метода
- •2.8. Проверка (тестирование) модели
- •3. Математическое моделирование
- •3.1. Задачи и цели исследования математических моделей
- •3.2. Методология математического моделирования. Системный анализ
- •3.2.1. Понятие системы
- •3.2.2. Этапы системного анализа и декомпозиция
- •3.2.3. Экспертные оценки
- •3.3. Классификация математических моделей
- •3.4. Методы формализованного описания системы
- •3.4.1. Математическая модель по “входу-выходу”
- •3.4.2. Математическая модель в пространстве состояний
- •3.4.3. Описание линейных систем в пространстве состояний
- •3.4.4. Реализация систем в пространстве состояний
- •3.5. Методы построения математических моделей и их применение в сапр
- •3.5.1. Методы построения математических моделей
- •3.5.2. Математические модели с точки зрения сапр
- •3.5.4. Методика составления уравнений динамики элементов сау
- •3.6. Математические модели системы управления. Понятие об оптимальном управлении
- •4. Экспериментальное определение динамических характеристик объектов моделирования
- •4.1. Понятие о динамических характеристиках объектов
- •4.2. Определение динамических характеристик элементов систем по временным характеристикам
- •4.2.1. Определение статических характеристик
- •4.2.2. Определение динамических характеристик объектов с помощью периодических воздействий
- •4.4.1. Временные характеристики и их свойства
- •4.4.2. Определение характеристик апериодического звена
- •4.4.3. Определение характеристик колебательного звена
- •4.3. Формы описания динамических свойств объектов
- •4.4. Синтез пассивных двухполюсников и четырехполюсников
- •4.3.1. Разложение передаточной функции активного четырехполюсника
- •4.3.2. Способы синтеза двухполюсников
- •4.5. Экспериментальная отработка характеристик системы управления движущимся объектом
- •4.5.1. Общие положения
- •4.5.2. Алгоритмы обработки внешнетраекторных измерений
- •5. Динамические свойства воспринимающих элементов и датчиков
- •5.1. Основные определения и понятия
- •5.1.1. Понятие датчика
- •5.1.2. Классификация датчиков
- •5.2. Основные характеристики датчиков
- •5.2.1. Погрешности измерений
- •5.2.2. Чувствительность датчиков
- •5.2.3. Быстродействие датчика
- •5.3. Схемы формирования сигналов пассивных датчиков
- •5.3.1. Общие характеристики
- •5.4. Оптические датчики
- •5.4.1. Определения и основные зависимости
- •5.4.2. Фоторезисторы
- •5.4.3. Фотодиоды
- •5.4.4. Тепловые приемники излучения
- •5.4.5. Датчики изображения
- •5.4.6. Волоконная оптика
- •5.5. Датчики температуры
- •5.5.1. Методы измерения температуры
- •5.6. Датчики положения и перемещения
- •5.6.1. Методы определения положения и перемещения
- •5.6.2. Резисторные потенциометры
- •5.6.3. Индуктивные датчики
- •5.6.4. Емкостные датчики
- •5.6.5. Цифровые датчики
- •5.6.6. Датчики близости
- •5.7. Датчики деформации
- •5.7.1. Основные определения
- •5.7.2. Основные положения
- •5.8. Тахометрические датчики
- •5.8.1. Электродинамическая тахометрия
- •5.8.2. Импульсная тахометрия
- •5.8.3. Гирометры
- •5.9. Датчики ускорения, вибрации и удара
- •5.9.1. Общие положения
- •5.9.2. Принцип действия сейсмических датчиков
- •5.10. Датчики скорости, расхода и уровня жидкости
- •5.10.1. Элементарные понятия
- •5.10.2 Датчики и методы измерения скорости жидкости
- •5.10.3. Измерение расхода жидкости
- •5.10.4. Измерение и указание уровня жидкости
- •5.11. Датчики влажности
- •5.11.1. Определения
- •5.11.2. Гигрометры
- •5.12. Акустические датчики
- •5.12.1. Распространение плоской волны
- •5.12.2. Распространение трехмерной волны
- •5.12.3. Микрофоны
- •5.12.4. Измерение интенсивности
- •6. Основы технологии имитационного моделирования
- •6.1. Основные определения и понятия
- •6.2. Область применения и классификация имитационных моделей
- •6.3. Описание поведения системы
- •6.3.1. Общие положения.
- •6.3.2. Методика моделирования случайных факторов
- •6.3.3. Два подхода к моделированию случайных чисел
- •6.4. Оценка качества псевдослучайных чисел
- •6.5. Оценка качества имитационного моделирования
- •7. Методы испытаний систем управления и их применение в системах автоматизированного проектирования (сапр)
- •7.1. Полунатурное моделирование
- •7.1.1. Общие положения
- •7.1.2. Автоматизация испытаний на основе полунатурного моделирования
- •8. Анализ систем управления с эвм
- •8.1. Основные задачи
- •8.2. Особенности систем управления с эвм
- •8.2. Основные положения из теории дискретных линейных систем
- •8.2.1. Последовательности
- •8.2.2. Линейные системы с постоянными параметрами
- •8.2.3. Разностные уравнения
- •8.2.3.1. Решение разностных уравнений методом прямой подстановки
- •8.3. Расчет цифровых фильтров по фильтрам непрерывного времени
- •8.3.1 Методика синтеза цифровых фильтров. Общие положения
- •8.3.2 Методы дискретизации аналоговых фильтров
- •8.3.3. Геометрическая интерпретация методов расчета цифровых фильтров по фильтрам непрерывного времени
- •9. Моделирование свойств объектов с помощью системыMatLab
- •9.1. Введение
- •9.2. MatLab как научный калькулятор
- •9.2.1. Командное окно
- •9.2.2. Операции с числами
- •9.2.3. Простейшие операции с векторами и матрицами
- •9.2.4. Некоторые функции прикладной численной математики
- •9.2.5. Построение простейших графиков
- •9.3. Исследование линейных стационарных систем (лсс)
- •9.3.1. Классы пакета control.L
- •9.3.2. Ввод и преобразование моделей
- •Пример создания модели
- •9.3.3. Анализ системы
- •9.4. Моделирование динамических процессов с помощью подсистемы MatLab simulink
- •9.4.1. Краткие сведения о подсистеме MatLab simulink
- •9.4.2. Запуск подсистемы simulink
- •9.4.3. Создание модели
- •9.4.4. Некоторые основные приемы подготовки и редактирования модели
- •9.4.5. Установка параметров моделирования и его выполнение
- •9.2.2. Результат составления модели
- •Приложения п1. Динамические характеристики объектов моделирования
- •П2. Примеры составление функциональной и структурной схемы динамической системы
- •П2.1. Система управления угловой скорости вращения ротора двигателя при условии действия постоянного возмущения
- •П2.2. Система сопровождения цели
- •П2.3. Система автоматического наведения летательного аппарата на объект
- •П2.4. Система управления уровнем жидкости
- •П2.5. Система управления экономическими параметрами
- •Использованные источники
- •Основы теории и практики моделирования динамических систем
9.3.2. Ввод и преобразование моделей
Ввод модели линейной стационарной системы (ЛСС) в среду пакета CONTROL возможен в трех формах:
- в форме матриц пространства состояний;
- в виде коэффициентов числителя и знаменателей передаточной функции;
- в форме задания нулей, полюсов и коэффициента передачи системы.
К процедурам создания LTI- моделей относятся:
ss Создает модель пространства состояния по заданным матрицам A, B, C, D уравнений состояния системы.
dss Создает аналогичную модель по описанию пространства состояния более общего вида, когда уравнения переменных состояния не разрешены относительно производных.
tf Создает модель по заданным передаточным функциям системы.
zpk Создает модель по заданным нулям, полюсам и коэффициентам передачи системы.
filt Создает модель по дискретным передаточным функциям системы, записанным в форме полинома от z-1.
set Присваивает значения некоторым другим полям (атрибутам) LTI- объекта (названиям входов и выходов, названиям системы и т.п.).
get Выдает значения атрибутов объекта.
Указанные процедуры позволяют создавать как непрерывные модели, так и дискретные.
В последнем случае к числу входных параметров процедуры следует добавить в конце значения параметра Ts – шага дискретизации, а вводимые значения коэффициентов уже должны задавать параметры дискретных передаточных функций (для tf и zpk), либо матрицы конечно-разностных уравнений пространства состояний (при использовании процедур ss и dss).
При использовании процедуры filt должны задаваться векторы коэффициентов числителя и знаменателя дискретной передаточной функции, представленной в виде отношения полиномов от z-1.
Процедуры ss, dss, tf и zpk применяются также для преобразования моделей из одной из указанных форм в другую.
Модель, заданную как непрерывная, можно преобразовать в дискретную форму, воспользовавшись процедурой c2d в соответствии со схемой:
sysd=c2d(sys, Ts, method).
Здесь sys – исходная непрерывная заданная модель;
sysd – получаемый в результате работы процедуры дискретный аналог исходной системы;
Ts – задаваемое значение шага дискретизации;
method – параметр, определяющий метод дискретизации. Например:
‘zoh’ – соответствует применению экстрополятора нулевого порядка: внутри интервала дискретизации сигналы аппроксимируются постоянной величиной, равной значению сигнала в начале интервала дискретизации;
‘foh’ - соответствует применению экстрополятора первого порядка: внутри интервала дискретизации сигналы аппроксимируются отрезками прямых, проходящих через концы кривой сигнала в интервале дискретизации.
Процедура d2c осуществляет обратную операцию – переводит дискретную систему в непрерывную.
Процедура d2d позволяет переопределить дискретную систему, меняя шаг дискретизации:
sys1=d2d(sys, Ts).
Для создания модели нужно предварительно либо перевести уравнения всей системы к форме уравнений пространства состояния, либо найти передаточные функции системы.
В общем случае это довольно сложно.
В то же время реальные САУ состоят из соединенных между собой отдельных блоков (динамических звеньев), уравнения которых достаточно просты.
Поэтому в практике проектирования САУ принято использовать структурные методы, когда САУ задается как определенная схема соединения отдельных элементарных динамических звеньев, и фактически проектируется одно или несколько из этих звеньев таким образом, чтобы обеспечить заданное качество всей системы.
В соответствии с этим в MatLab предусмотрена возможность “набирать” программно схему САУ путем:
- предварительного ввода моделей звеньев, составляющих САУ, и
- последующего “соединения” этих звеньев в единую структуру.
К процедурам, осуществляющим расчет характеристик соединений отдельных звеньев, относятся:
plus (minus) – выполняет параллельное соединении указанных звеньев;
parallel - выполняет ту же процедуру, параллельного соединения звеньев; отличие – может использоваться для многомерных систем и для осуществления параллельного соединения лишь по некоторым входам и выходам
mtimes (или знак “*” между именами звеньев) – выполняет последовательное соединении указанных звеньев; применяется для одномерных систем;
series - выполняет последовательное частичное соединении многомерных систем;
feedback - выполняет такое соединении двух звеньев, когда второе указанное звено составляет цепь отрицательной обратной связи для первого звена;
append - выполняет формальное объединение не связанных между собой систем (добавление выходов и входов второй системы к выходам и входам первой);
connect – установление соединений входов и выходов многомерной системы, созданной формальным объединением процедурой append;
inv – рассчитывает САУ, обратную указанной, т.е. такую, у которой выходы и входы поменяли местами.