
- •Министерство образования и науки Российской Федерации
- •Содержание
- •Введение
- •1. Современное состояние проблемы моделирования систем
- •1.1. Моделирование как метод научного познания. Философские аспекты моделирования
- •1.2. Использование моделирования при исследовании и проектировании систем
- •1.2.1. Особенности разработки систем
- •1.2.2. Особенности использования моделей
- •1.2.3. Перспективы развития методов и средств моделирования систем
- •2. Основные понятия теории моделирования систем
- •2.1. Принцип системного подхода в моделировании систем
- •2.1.1. Структура системы – совокупность связей между элементами системы
- •2.1.2. Экспериментальные исследования систем
- •2.2. Стадии разработки моделей
- •2.3. Понятие подобия
- •2.3.1. Общие положения
- •2.3.2. Основные понятия теории размерности
- •2.3.3. Примеры подобия
- •2.4. Общая характеристика проблемы моделирования систем
- •2.4.1. Объект моделирования.
- •2.4.2. Характеристики моделей систем
- •2.4.3. Цели моделирования систем
- •2.5. Классификация видов и методов моделирования систем
- •2.5.1. Классификационные признаки
- •2.5.2. Математическое моделирование.
- •2.6. Построение модели
- •2.7. Разработка вычислительного метода
- •2.8. Проверка (тестирование) модели
- •3. Математическое моделирование
- •3.1. Задачи и цели исследования математических моделей
- •3.2. Методология математического моделирования. Системный анализ
- •3.2.1. Понятие системы
- •3.2.2. Этапы системного анализа и декомпозиция
- •3.2.3. Экспертные оценки
- •3.3. Классификация математических моделей
- •3.4. Методы формализованного описания системы
- •3.4.1. Математическая модель по “входу-выходу”
- •3.4.2. Математическая модель в пространстве состояний
- •3.4.3. Описание линейных систем в пространстве состояний
- •3.4.4. Реализация систем в пространстве состояний
- •3.5. Методы построения математических моделей и их применение в сапр
- •3.5.1. Методы построения математических моделей
- •3.5.2. Математические модели с точки зрения сапр
- •3.5.4. Методика составления уравнений динамики элементов сау
- •3.6. Математические модели системы управления. Понятие об оптимальном управлении
- •4. Экспериментальное определение динамических характеристик объектов моделирования
- •4.1. Понятие о динамических характеристиках объектов
- •4.2. Определение динамических характеристик элементов систем по временным характеристикам
- •4.2.1. Определение статических характеристик
- •4.2.2. Определение динамических характеристик объектов с помощью периодических воздействий
- •4.4.1. Временные характеристики и их свойства
- •4.4.2. Определение характеристик апериодического звена
- •4.4.3. Определение характеристик колебательного звена
- •4.3. Формы описания динамических свойств объектов
- •4.4. Синтез пассивных двухполюсников и четырехполюсников
- •4.3.1. Разложение передаточной функции активного четырехполюсника
- •4.3.2. Способы синтеза двухполюсников
- •4.5. Экспериментальная отработка характеристик системы управления движущимся объектом
- •4.5.1. Общие положения
- •4.5.2. Алгоритмы обработки внешнетраекторных измерений
- •5. Динамические свойства воспринимающих элементов и датчиков
- •5.1. Основные определения и понятия
- •5.1.1. Понятие датчика
- •5.1.2. Классификация датчиков
- •5.2. Основные характеристики датчиков
- •5.2.1. Погрешности измерений
- •5.2.2. Чувствительность датчиков
- •5.2.3. Быстродействие датчика
- •5.3. Схемы формирования сигналов пассивных датчиков
- •5.3.1. Общие характеристики
- •5.4. Оптические датчики
- •5.4.1. Определения и основные зависимости
- •5.4.2. Фоторезисторы
- •5.4.3. Фотодиоды
- •5.4.4. Тепловые приемники излучения
- •5.4.5. Датчики изображения
- •5.4.6. Волоконная оптика
- •5.5. Датчики температуры
- •5.5.1. Методы измерения температуры
- •5.6. Датчики положения и перемещения
- •5.6.1. Методы определения положения и перемещения
- •5.6.2. Резисторные потенциометры
- •5.6.3. Индуктивные датчики
- •5.6.4. Емкостные датчики
- •5.6.5. Цифровые датчики
- •5.6.6. Датчики близости
- •5.7. Датчики деформации
- •5.7.1. Основные определения
- •5.7.2. Основные положения
- •5.8. Тахометрические датчики
- •5.8.1. Электродинамическая тахометрия
- •5.8.2. Импульсная тахометрия
- •5.8.3. Гирометры
- •5.9. Датчики ускорения, вибрации и удара
- •5.9.1. Общие положения
- •5.9.2. Принцип действия сейсмических датчиков
- •5.10. Датчики скорости, расхода и уровня жидкости
- •5.10.1. Элементарные понятия
- •5.10.2 Датчики и методы измерения скорости жидкости
- •5.10.3. Измерение расхода жидкости
- •5.10.4. Измерение и указание уровня жидкости
- •5.11. Датчики влажности
- •5.11.1. Определения
- •5.11.2. Гигрометры
- •5.12. Акустические датчики
- •5.12.1. Распространение плоской волны
- •5.12.2. Распространение трехмерной волны
- •5.12.3. Микрофоны
- •5.12.4. Измерение интенсивности
- •6. Основы технологии имитационного моделирования
- •6.1. Основные определения и понятия
- •6.2. Область применения и классификация имитационных моделей
- •6.3. Описание поведения системы
- •6.3.1. Общие положения.
- •6.3.2. Методика моделирования случайных факторов
- •6.3.3. Два подхода к моделированию случайных чисел
- •6.4. Оценка качества псевдослучайных чисел
- •6.5. Оценка качества имитационного моделирования
- •7. Методы испытаний систем управления и их применение в системах автоматизированного проектирования (сапр)
- •7.1. Полунатурное моделирование
- •7.1.1. Общие положения
- •7.1.2. Автоматизация испытаний на основе полунатурного моделирования
- •8. Анализ систем управления с эвм
- •8.1. Основные задачи
- •8.2. Особенности систем управления с эвм
- •8.2. Основные положения из теории дискретных линейных систем
- •8.2.1. Последовательности
- •8.2.2. Линейные системы с постоянными параметрами
- •8.2.3. Разностные уравнения
- •8.2.3.1. Решение разностных уравнений методом прямой подстановки
- •8.3. Расчет цифровых фильтров по фильтрам непрерывного времени
- •8.3.1 Методика синтеза цифровых фильтров. Общие положения
- •8.3.2 Методы дискретизации аналоговых фильтров
- •8.3.3. Геометрическая интерпретация методов расчета цифровых фильтров по фильтрам непрерывного времени
- •9. Моделирование свойств объектов с помощью системыMatLab
- •9.1. Введение
- •9.2. MatLab как научный калькулятор
- •9.2.1. Командное окно
- •9.2.2. Операции с числами
- •9.2.3. Простейшие операции с векторами и матрицами
- •9.2.4. Некоторые функции прикладной численной математики
- •9.2.5. Построение простейших графиков
- •9.3. Исследование линейных стационарных систем (лсс)
- •9.3.1. Классы пакета control.L
- •9.3.2. Ввод и преобразование моделей
- •Пример создания модели
- •9.3.3. Анализ системы
- •9.4. Моделирование динамических процессов с помощью подсистемы MatLab simulink
- •9.4.1. Краткие сведения о подсистеме MatLab simulink
- •9.4.2. Запуск подсистемы simulink
- •9.4.3. Создание модели
- •9.4.4. Некоторые основные приемы подготовки и редактирования модели
- •9.4.5. Установка параметров моделирования и его выполнение
- •9.2.2. Результат составления модели
- •Приложения п1. Динамические характеристики объектов моделирования
- •П2. Примеры составление функциональной и структурной схемы динамической системы
- •П2.1. Система управления угловой скорости вращения ротора двигателя при условии действия постоянного возмущения
- •П2.2. Система сопровождения цели
- •П2.3. Система автоматического наведения летательного аппарата на объект
- •П2.4. Система управления уровнем жидкости
- •П2.5. Система управления экономическими параметрами
- •Использованные источники
- •Основы теории и практики моделирования динамических систем
5.7. Датчики деформации
Знание механических напряжений, возникающих в конструкции при определенных условиях эксплуатации – главное условие обеспечения надежности функционирования конструкции.
Напряжение в материале вызывает деформацию, а соотношение между этими двумя величинами – напряжение – деформация – определяется из теории сопротивления материалов.
Измерение деформаций позволяет вычислить вызывающие их напряжения.
Датчики деформации могут служить также измерителями удлинений.
Наиболее часто используются резисторные датчики, которые приклеиваются на образец и деформируются вместе с ним.
5.7.1. Основные определения
Деформация ε – это отношение приращения Δl некоторого линейного размера к первоначальному значению этого размера:
.
(5.61)
Упругая деформация – деформация, которая исчезает после устранения силы, ее вызвавшей.
Напряжение σ – это сила F на единицу площади S сечения:
.
(5.62)
Предел упругости – максимальное напряжение, не вызывающее остаточно деформации.
Закон Гука: в области упругости деформация ε пропорциональна напряжению σ
.
(5.63)
Модуль
Юнга Y
– определяет деформацию в направлении
действия силы
.
(5.64)
Коэффициент Пуассона ν определяет деформацию, перпендикулярную направлению действия силы:
.
(5.65)
В
области упругости имеет место соотношение
.
5.7.2. Основные положения
Резисторные датчики являются пассивными, т.к. они преобразуют в изменение сопротивления их собственную деформацию, практически равную деформации образца в области закрепления датчика.
Такой датчик представляет собой сетку из нитевидных проводников (см. рисунок 5. 19).
Сопротивление датчика определяется выражением
,
(5.66)
где
-
удельное сопротивление проводника;
- площадь поперечного
сечения нити;
- длина нитевидного
элемента;
- количество
элементов.
Под
действием деформации сопротивление
датчика изменяется на
.
Его значение определяется можно получить
из выражения (5.66) путем следующих
преобразований:
.
(5.67)
Разделив левую и правую части полученного выражения (5.67)на начальное значение сопротивления, определяемого выражением (5.66), легко получим:
.
(5.68)
Продольные деформации нити приводят к изменению ее поперечных размеров - сторон a, b (если сечение прямоугольное) или диаметра d (если сечение нити случае круглое).
Очевидно, что поперечная деформация пропорциональна продольной, следовательно, имеют место соотношения:
,
(5.69)
где
- коэффициент Пуассона.
Используя
выражения для площади сечения нити
(в случае прямоугольного сечения) и
(в
случае круглого сечения), а также
выражение (5.69), можно получить еще одну
связь между поперечной и продольной
деформациями – между изменением площади
сечения
нити и продольной деформацией
:
- (5.70)
в случае плоского сечения нити и
-
(5.71)
в случае круглого сечения нити.
Для металлических датчиков используется еще формула Бриджмена, связывающая изменение удельного сопротивления с изменением объема:
,
(5.72)
где c – константа Бриджмена.
Поскольку имеет место
,
то после очевидных преобразований можно получить
.
(5.73)
Из соотношения (5.72), используя последнее соотношение, получим
,
(5.74)
Далее из (5.68) с учетом (5.74) и (5.71) имеем
,
(5.75)
где
.
(5.76)
Учитывая,
что
,
,
получим
,
т.е. коэффициент преобразования
металлического датчика можно принять
.
Для
полупроводниковых
датчиков
удельное сопротивление зависит от
напряжения
и от коэффициента пъезорезистивностиπ.
Соответствующее выражение имеет вид:
.
(5.77)
Следовательно, для полупроводникового датчика изменение сопротивления можно записать по аналогии (5.75) в виде
,
(5.78)
где
.
(5.79)
Обычно
имеет место
.
Поэтому на практике коэффициент
преобразования принимают
.