
- •Л.М. Лыньков, в.Ф. Голиков, т.В. Борботько основы защиты информации
- •Содержание
- •1.1. Введение в защиту информации
- •1.2. Классификация угроз информационной безопасности
- •1.3. Классификация методов защиты информации
- •1.4. Охраняемые сведения
- •1.5. Демаскирующие признаки
- •1.6. Контрольные вопросы
- •2. Правовые и организационные методы защиты информации
- •2.1. Правовое обеспечение защиты информации
- •2.2. Государственное регулирование в сфере защиты информации
- •2.3. Контрольные вопросы
- •3. Технические каналы утечки информации
- •3.1. Классификация
- •3.2. Акустические каналы утечки информации
- •3.3. Материально-вещественный и визуально-оптический каналы утечки информации
- •3.4. Электромагнитные каналы утечки информации
- •3.5. Утечка информации по цепям заземления
- •3.6. Утечка информации по цепям электропитания
- •3.7. Перехват информации в телефонных каналах связи
- •3.8. Высокочастотное навязывание
- •3.9. Контрольные вопросы
- •4. Пассивные методы защиты информации от утечки по техническим каналам
- •4.1. Экранирование электромагнитных полей
- •4.2. Конструкции экранов электромагнитного излучения
- •4.3. Фильтрация
- •4.4. Заземление технических средств
- •4.5. Звукоизоляция помещений
- •4.6. Контрольные вопросы
- •5. Активные методы защиты информации от утечки по техническим каналам
- •5.1. Акустическая маскировка
- •5.2. Электромагнитная маскировка
- •5.3. Обнаружение закладных устройств
- •5.4. Технические средства обнаружения закладных устройств
- •5.5. Контрольные вопросы
- •6. Инженерно-техническая защита объектов от несанкционированного доступа
- •6.1. Категорирование объектов
- •6.2. Классификация помещений и территории объекта
- •6.3. Инженерные заграждения
- •6.4. Технические средства охраны периметра объекта
- •6.4.1 Радиоволновые и радиолучевые средства обнаружения
- •6.4.2 Оптические средства обнаружения
- •6.4.3 Сейсмические средства обнаружения
- •6.4.4 Магнитометрические средства обнаружения
- •6.5. Охранное телевидение
- •Способы представления визуальной информации оператору
- •6.6. Системы контроля и управления доступом
- •6.6.1 Автономные скуд
- •6.6.2 Сетевые скуд
- •6.7. Управляемые преграждающие устройства
- •6.8. Контрольные вопросы
- •7. Криптографическая защита информации
- •7.1. Основы построения криптосистем
- •7.1.1. Общие принципы криптографической защиты информации
- •7.1.2. Блочные и поточные шифры
- •Поточное шифрование
- •Блочное шифрование
- •Блочное шифрование с обратной связью
- •7.2. Симметричные криптосистемы
- •7.2.1. Основные понятия и определения
- •7.2.2. Традиционные симметричные криптосистемы
- •Шифры перестановок
- •Шифры простой замены
- •Шифры сложной замены
- •Шифрование методом гаммирования
- •7.2.3. Современные симметричные криптосистемы
- •7.3. Стандарт шифрования данных гост 28147-89
- •7.3.1. Режим простой замены Шифрование открытых данных в режиме простой замены
- •Расшифровывание в режиме простой замены
- •7.3.2. Режим гаммирования Зашифровывание открытых данных в режиме гаммирования
- •Расшифровывание в режиме гаммирования
- •7.3.3. Режим гаммирования с обратной связью
- •Шифрование открытых данных в режиме гаммирования с обратной связью
- •Расшифровывание в режиме гаммирования с обратной связью
- •7.3.4. Режим выработки имитовставки
- •7.4. Асимметричные криптосистемы Концепция криптосистемы с открытым ключом
- •7.5. Электронная цифровая подпись
- •7.5.1. Общие сведения
- •Эцп функционально аналогична обычной рукописной подписи и обладает ее основными достоинствами:
- •7.5.2. Однонаправленные хэш-функции
- •7.5.3. Алгоритм электронной цифровой подписи rsa
- •7.5.4. Белорусские стандарты эцп и функции хэширования
- •Обозначения, принятые в стандарте стб‑1176.02‑99
- •Процедура выработки эцп
- •Процедура проверки эцп
- •7.6. Аутентификация пользователей в телекоммуникационных системах
- •7.6.1. Общие сведения
- •7.6.2. Удаленная аутентификация пользователей с использованием пароля
- •7.6.3. Удаленная аутентификация пользователей с использованием механизма запроса-ответа
- •7.6.4. Протоколы идентификации с нулевой передачей знаний
- •Упрощенная схема идентификации с нулевой передачей знаний
- •Параллельная схема идентификации с нулевой передачей знаний
- •7.7. Контрольные вопросы
- •8. Защита информации в автоматизированных системах
- •8.1. Политика безопасности
- •8.1.1. Избирательная политика безопасности
- •8.1.2. Полномочная политика безопасности
- •8.1.3. Управление информационными потоками
- •8.2. Механизмы защиты
- •8.3. Принципы реализации политики безопасности
- •8.4. Защита транзакций в Интернет
- •8.4.1 Классификация типов мошенничества в электронной коммерции
- •8.4.2. Протокол ssl
- •Этап установления ssl-сессии («рукопожатие»)
- •Этап защищенного взаимодействия с установленными криптографическими параметрами ssl-сессии
- •8.4.3. Протокол set
- •6. Банк продавца авторизует данную операцию и посылает подтверждение, подписанное электронным образом, web-серверу продавца.
- •8.5. Атаки в компьютерных сетях
- •8.5.1. Общие сведения об атаках
- •8.5.2. Технология обнаружения атак
- •8.5.3. Методы анализа информации при обнаружении атак Способы обнаружения атак
- •Методы анализа информации
- •8.6. Межсетевые экраны
- •8.6.1. Общие сведения
- •8.6.2. Функции межсетевого экранирования
- •8.6.3. Фильтрация трафика
- •8.6.4. Выполнение функций посредничества
- •8.6.5. Особенности межсетевого экранирования на различных уровнях модели osi
- •8.6.6. Экранирующий маршрутизатор
- •8.6.7. Шлюз сеансового уровня
- •8.6.8. Прикладной шлюз
- •8.7. Контрольные вопросы
- •Литература
- •Основы защиты информации
- •220013, Минск, п. Бровки, 6
Этап защищенного взаимодействия с установленными криптографическими параметрами ssl-сессии
1. Каждая сторона при передаче сообщения формирует код для последующей проверки целостности сообщения на приемной стороне (MAC) и шифрует исходное сообщение вместе с кодом на своем секретном сеансовом ключе.
2. Каждая сторона при приеме сообщения расшифровывает его и проверяет на целостность (вычисляется MAC и сверяется с кодом проверки целостности, полученным вместе с сообщением); в случае обнаружения нарушения целостности сообщения SSL-сессия закрывается.
Описанная процедура установления SSL-сессии, безусловно, не обладает полнотой изложения, однако дает представление о возможностях протокола SSL.
Как следует из описания протокола SSL, асимметричные алгоритмы шифрования используются только на этапе установления защищенной сессии. Для защиты информационного обмена от несанкционированного доступа используются только симметричные алгоритмы. Это делается в первую очередь для того, чтобы повысить производительность протокола SSL.
Для защиты трафика в Интернете помимо протокола SSL используется протокол S-HTTP (Secure HTTP). Этот протокол обеспечивает целостность и защиту документов, передаваемых по протоколу HTTP. В отличие от протокола SSL, расположенного между транспортным уровнем (TCP) и протоколами сеансового уровня, протокол S-HTTP находится на прикладном уровне OSI, что позволяет с его помощью защищать не транспортное соединение, а данные, передаваемые по соединению. Это повышает производительность протокола защиты информации, но ценой ограничения применимости механизма защиты только приложением HTTP.
Достоинства протокола:
1. Широкое распространение протокола SSL, которое объясняется в первую очередь тем, что он является составной частью всех известных Интернет-браузеров и Web-серверов. Это означает, что фактически любой владелец карты, пользуясь стандартными средствами доступа к Интернету, получает возможность провести транзакцию с использованием SSL;
2. Простота протокола для понимания всех участников ЭК;
3. Хорошие операционные показатели (скорость реализации транзакции). Последнее достоинство связано с тем, что протокол в процессе передачи данных использует только симметричные протоколы шифрования.
Недостатками протокола SSL в приложении к ЭК являются:
1. Отсутствие аутентификации клиента Интернет-магазином, поскольку сертификаты клиента в протоколе почти не используются. Использование «классических» сертификатов клиентами в схемах SSL является делом практически бесполезным. Такой «классический» сертификат, полученный клиентом в одном из известных центров сертификации, содержит только имя клиента и, что крайне редко, его сетевой адрес.
2. Протокол SSL не позволяет аутентифицировать клиента обслуживающим банком.
3. При использовании протокола SSL торговое предприятие (ТП) аутентифицируется только по своему адресу в Интернете (URL). Это значит, что клиент, совершающий транзакцию ЭК, не аутентифицирует ТП в полном смысле. Аутентификация ТП только по URL облегчает мошенническим ТП доступ к различным системам ЭК. В частности, торговые предприятия, занимающиеся сбором информации о картах клиентов, могут получить сертификат в каком-либо известном центре сертификации общего пользования на основании только своих учредительных документов.
4. Протокол SSL не поддерживает цифровой подписи, что затрудняет процесс разрешения конфликтных ситуаций, возникающих в работе платежной системы (цифровая подпись используется в начале установления SSL-сессии при аутентификации участников сессии). Для доказательства проведения транзакции требуется либо хранить в электронном виде весь диалог клиента и ТП (включая процесс установления сессии), что дорого с точки зрения затрат ресурсов памяти и на практике не используется, либо хранить бумажные копии, подтверждающие получение клиентом товара.
5. При использовании SSL не обеспечивается конфиденциальность данных о реквизитах карты для ТП.