
- •Минобрнауки россии
- •Лекция № 1 общие сведения об электрических и электронных аппаратах
- •1.1 Предмет и задачи изучения дисциплины, её значение для подготовки дипломированных специалистов
- •1.2 Понятие об электрическом и электронном аппарате
- •1.2.1 Совершенствование электрических аппаратов как насущная необходимость повышения эффективности установок по производству, распределению и потреблению электрической энергии
- •1.3.1 Назначение и область применения электрических аппаратов (эа)
- •1.3.2 Классификация электрических аппаратов
- •1.4 Расположение электрических аппаратов в установке по производству по производству, распределению и потреблению электрической энергии
- •1.5. Требования, предъявляемые к электрическим аппаратам
- •1.6 Особенности схем электроустановок и общие требования к их выполнению
- •Лекция № 2 свойства электрической дуги и условия её гашения
- •2.1 Свойства дугового разряда
- •2.2 Вольт-амперная характеристика дуги (вах)
- •2.3 Условия гашения дуги постоянного тока
- •2.4 Энергия, выделяемая в дуге
- •2.5. Условия гашения дуги переменного тока
- •Лекция № 3 название
- •3.1 Способы гашения электрической дуги
- •3.2 Дугогасительные устройства постоянного и переменного тока
- •3.2.1 Широкие и узкие продольные щели
- •3.2.2 Дугогасительные решётки
- •3.2.3 Гашение дуги высоким давлением
- •3.2.4 Гашение дуги в масле
- •3.2.5. Гашение дуги воздушным дутьём
- •3.2.6 Гашение дуги в элегазе
- •3.2.7 Гашение дуги в вакууме
- •3.3 Применение полупроводниковых приборов для облегчения гашения дуги
- •3.3.1 Коммутация цепей переменного тока
- •3.3.2 Коммутация цепей постоянного тока
- •Лекция № 4 электрические контакты
- •4.1 Общие сведения
- •4.2 Режимы работы контактов
- •4.2.1 Включение цепи
- •4.2.2 Проведение тока во включенном состоянии
- •4.2.3 Отключение цепи
- •4.2.4 Способы уменьшения износа контактов
- •4.3 Материалы контактов
- •Конструкция твёрдометаллических контактов
- •4.5 Жидкометаллические контакты
- •4.6 Расчёт контактов аппаратов
- •Лекция № 5 электродинамические усилия в электрических аппаратах
- •5.1 Общие сведения
- •5.2 Методы расчёта электродинамических усилий (эду)
- •5.3 Усилия между параллельными проводниками
- •5.4 Усилия и моменты, действующие на взаимно перпендикулярные проводники
- •5.5 Усилия в витке, катушке и между катушками
- •Лекция № 6
- •6.1 Усилия в месте изменения сечения проводника
- •6.2 Усилия при наличии ферромагнитных частей
- •6.3 Электродинамические усилия при переменном токе
- •6.4 Электродинамическая стойкость электрических аппаратов
- •6.5 Расчёт динамической стойкости шин
- •Лекция 7 нагрев электрических аппаратов
- •7.1 Общие сведения
- •7.2 Активные потери энергии в аппаратах
- •7.3 Способы передачи тепла внутри нагретых тел и с их поверхности
- •7.4. Установившийся режим нагрева
- •7.5 Нагрев аппаратов в переходных режимах
- •7.6 Нагрев аппаратов при коротком замыкании
- •7.7 Допустимая температура различных частей электрических аппаратов
- •7.8 Термическая стойкость электрических аппаратов
- •Лекция № 8 электромагнитные контакторы переменного тока
- •8.1 Назначение контакторов
- •8.2 Классификация контакторов
- •8.3 Область применения контакторов
- •8.4 Узлы контактора и принцип его действия; физические явления, происходящие в электрическом аппарате
- •8.5 Параметры контакторов
- •Лекция № 9 контакторы переменного тока, их конструкция и основные параметры
- •9.1 Контактная система
- •9.2 Электромагнитные системы: физические явления, происходящие в электрических аппаратах
- •9.3 Конструкция контакторов переменного тока
- •9.4 Контакторы серии кт6600
- •9.5 Контакторы серии кт64 и кт65
- •9.6 Контакторы серии мк
- •9.7 Контакторы переменного тока на напряжение 1140 в
- •9.8 Контакторы переменного тока вакуумные
- •9.9 Выбор, применение и эксплуатация контакторов
- •Лекция № 10 электромагнитные контакторы потоянного тока
- •10.1 Режимы работы контакторов, физические явления, происходящие в электрических аппаратах
- •10.2 Контакторы постоянного тока, их конструкция и основные параметры
- •10.3 Контакторы серии кпв-600
- •10.4 Контакторы типа ктпв-600
- •10.5 Контакторы типа кмв. Контакторы серии кп81
- •10.6 Выбор электрических аппаратов
- •11.3 Конструкция и схема включения
- •11.4 Магнитные пускатели серии пмл
- •11.5 Пускатели серии пма
- •11.6 Нереверсивные пускатели
- •11.7 Схема включения нереверсивного пускателя
- •11.8 Реверсивный магнитный пускатель
- •11.9 Схема включения реверсивного пускателя
- •11.10 Выбор магнитных пускателей
- •Лекция №12 электромагнитные реле
- •12.1 Назначение и область применения реле
- •12.2 Классификация реле
- •12.3 Принцип действия и устройство электромагнитных реле, физические явления в электрических аппаратах
- •12.4 Основные характеристики и параметры реле
- •12.5 Требования, предъявляемые к реле
- •12.6 Согласование тяговых и противодействующих характеристик реле
- •12.7 Электромагнитные реле тока и напряжения для защиты энергосистем, управления и защиты электропривода
- •12.8 Выбор, применение и эксплуатация максимально-токовых реле
- •Iуст. (1,3 – 1,5)I пуск ,
- •I уст 0,75i пуск .
- •Лекция № 13 герконовые реле (гр)
- •13.1 Назначение, принцип действия и устройство геркона; физическиеявления в электрическом аппарате
- •13.2 Основные параметры герконового реле
- •13.3 Конструкции герконовых реле
- •13.4 Реле тока на герконе
- •13.5 Поляризованные гр
- •13.6 Управление герконом с помощью ферромагнитного экрана
- •Лекция № 14
- •14.1 Гр с магнитной памятью
- •14.2 Конструкция гезаконов
- •14.3. Силовые герконы
- •14.4 Расчёт обмотки геркона
- •Лекция № 15 тяговые электромагниты
- •15.1 Основные понятия, физические явления в электрических аппаратах
- •15.2 Энергия магнитного поля и индуктивность системы
- •15.3 Работа, производимая якорем магнита при перемещении
- •15.4 Вычисление сил и моментов электромагнита
- •15.5 Электромагниты переменного тока
- •15.6 Короткозамкнутый виток
- •15.7 Статические тяговые характеристики электромагнитов и механические характеристики аппаратов
- •Лекция № 16 тормозные устройства
- •16.1 Динамические характеристики электромагнитов
- •16.2 Уравнение движения подвижной системы
- •16.3 Замедление и ускорение действия электромагнита
- •16.4 Тормозные устройства, физические явления в электрических аппаратах
- •16.5 Поляризованные электромагнитные системы
- •Лекция № 17 предохранители низкого напряжения
- •17.1 Назначение, принцип действия и устройство предохранителя
- •17.2 Параметры предохранителя
- •17.3 Конструкция предохранителей
- •17.4 Предохранители с гашением дуги в закрытом объёме
- •17.5 Предохранители с мелкозернистым наполнителем (серии пн-2, прс)
- •17.6 Предохранители с жидкометаллическим контактом
- •17.7 Быстродействующие предохранители для защиты полупроводниковых приборов
- •17.8 Предохранитель-выключатель
- •17.9 Выбор, применение и эксплуатация предохранителя для защиты электродвигателя и полупроводниковых устройств
- •Лекция № 18 автоматические воздушные выключатели (автоматы)
- •18.1 Назначение, классификация и область применения автоматов
- •18.2 Требования, предъявляемые к автоматам
- •18.3 Узлы автомата и принцип его действия, физические явления в электрическом аппарате
- •18.4 Основные параметры автомата
- •18.5 Универсальные и установочные автоматы
- •18.6 Быстродействующие автоматы
- •18.7 Автоматы для гашения магнитного поля мощных генераторов
- •18.8 Выбор, применение и эксплуатация автоматических воздушных выключателей
- •Лекция № 19 выключатели переменного тока высокого напряжения
- •19.1 Назначение выключателей вн
- •19.2 Основные параметры
- •19.3 Требования, предъявляемые к выключателям
- •19.4 Классификация выключателей
- •19.5 Принцип действия и устройство высоковольтных выключателей, физические явления в электрическом аппарате
- •19.6 Баковые масляные выключатели
- •19.7 Маломасляные выключатели
- •Лекция № 20
- •20.1 Приводы масляных выключателей
- •20.2 Воздушные выключатели
- •20.3 Элегазовые выключатели
- •20.4 Вакуумные выключатели
- •20.5 Электромагнитные выключатели
- •20.6 Выключатели нагрузки
- •20.7 Выбор, применение и эксплуатация выключателей вн
- •Лекция № 21 разъеденители
- •21.1 Назначение разъединителей
- •21.2 Требования, предъявляемые к разъединителям
- •21.3 Классификация разъединителей
- •21.4 Принцип действия, устройство и основные параметры разъединителей, физические явления в электрических аппаратах
- •21.5 Разъединители для внутренней установки
- •21.6 Разъединители для наружной установки
- •21.7 Блокировка разъединителей и выключателей
- •21.8 Выбор, применение и эксплуатация разъединителей
- •Лекция № 22 отделители и короткозамыкатели
- •22.1 Назначение и принцип действия короткозамыкателей и отделителей, физические явления в электрических аппаратах
- •22.2 Конструкция короткозамыкателей и отделителей
- •22.3 Основные параметры
- •22.4 Выбор короткозамыкателей и отделителей
- •Лекция № 23 токоограничивающие реакторы
- •23.1 Назначение, область применения и принцип работы реактора, физические явления в электрическом аппарате
- •23.2 Основные параметры реактора
- •23.3 Бетонные реакторы
- •23.4 Масляные реакторы
- •23.5 Сдвоенные реакторы
- •23.6 Выбор, применение и эксплуатация реакторов
- •Лекция № 24 разрядники
- •24.1 Назначение, область применения разрядников
- •24.2 Требования, предъявляемые к разрядникам
- •24.3 Основные параметры разрядников
- •24.4 Конструкции разрядников, физические явления в электрических аппаратах
- •24.5 Трубчатые разрядники, физические явления в электрическом аппарате
- •24.6 Вентильные разрядники, физические явления в электрическом аппарате
- •24.7 Разрядники постоянного тока, физические явления в электрическом аппарате
- •24.8 Ограничители перенапряжения, физические явления в электрических аппаратах
- •24.9 Выбор разрядников
- •Лекция № 25 предохранители высокого напряжения
- •25.1 Назначение предохранителей
- •25.2 Требования, предъявляемые к предохранителям вн
- •25.3 Принцип действия, устройство и основные параметры предохранителей вн, физические явления в электрических аппаратах
- •25.4 Предохранители с мелкозернистым наполнителем серий пк и пкт
- •25.5 Предохранители серии пктн
- •25.6 Предохранители с автогазовым, газовым и жидкостным гашением дуги
- •25.7 Выбор, применение и эксплуатация предохранителей вн
- •I отк. Пред I кз. Уст лекция № 26 измерительные трансформаторы тока (тт)
- •26.1 Назначение, принцип действия, схема включения трансформатора тока
- •26.2 Основные параметры трансформаторов тока
- •26.3 Режимы работы трансформаторов тока
- •I'1апер, i2апер, I'0апер – кривые апериодической составляющей первичного, вторичного тока и апериодической составляющей намагничивающего тока
- •26.4 Конструкция и принцип действия трансформаторов тока, физические явления в электрическом аппарате
- •26.5 Выбор трансформаторов тока
- •Лекция №27 измерительные трансформаторы напряжения (тн)
- •27.1 Назначение и основные параметры тн
- •27.2 Принцип действия тн, физические явления в электрическом аппарате
- •27.3 Схема включения однофазного тн
- •27.4 Конструкция тн
- •27.5 Выбор трансформаторов тн
- •Лекция № 28 бесконтактные коммутирующие и регулирующие устройства переменного тока (бкрпу)
- •28.1 Современные подходы при создании коммутационных аппаратов низкого напряжения и перспективы их совершенствования
- •28.2 Пускатели тиристорные серии пт
- •28.3 Тиристорные станции управления типа блэ
- •28.4 Тиристорные станции управления серии пту
- •28.5 Тиристорный регулятор мощности
- •Лекция № 29 бесконтактные выключатели и устройства коммутации и защиты
- •29.1 Принципы создания бесконтактных выключателей
- •29.2 Транзисторные устройства коммутации и защиты сетей постоянного тока
- •29.3 Выключатели тиристорные
- •Лекция № 30 микропроцессоры и электронные управляющие машины
- •30.1 Общие сведения
- •30.2 Функциональная схема эвм
- •30.3. Электронные и микропроцессорные аппараты, их классификация и физические явления в них
- •30.4Функциональная схема управления электродвигателем постоянного тока с помощью микропроцессора
- •Лекция № 31 полупроводниковые и гибридные электрические аппараты
- •31.1 Общие сведения
- •31.2 Реле тока с выдержкой времени, зависящей от тока
- •31.3 Реле защиты от замыкания на землю
- •31.4 Реле защиты асинхронных двигателей (рзд)
- •31.5 Трёхфазные реле напряжения
- •31.6 Полупроводниковые реле времени
- •31.7 Цифровые реле времени
- •31.8 Применение оптоэлектронных приборов в электрических аппаратах
- •Лекция № 32 силовые полупроводниковые преобразователи с коммутацией от сети
- •32.1 Однофазные управляемые выпрямители
- •31.2 Коммутация тока и внешние характеристики однофазных управляемых выпрямителей
- •31.3 Трёхфазные управляемые выпрямители
- •31.4 Энергетические характеристики управляемых выпрямителей
- •31.5 Ведомые сетью инверторы
- •31.6. Высшие гармонические первичного тока управляемых выпрямителей и ведомых сетью инверторов
- •31.7 Непосредственные преобразователи частоты
- •Лекция № 33 преобразователи постоянного напряжения
- •33.1. Одноплечевой шип с симметричным законом управления
- •33.2 Мостовой широтно-импульсный преобразователь
- •33.3 Энергетические характеристики широтно-импульсных преобразователей
- •33.4 Импульсные источники питания постоянного тока
- •33.5 Энергетические характеристики импульсных источников питания
- •Лекция № 34 автономные инверторы
- •34.1 Однофазные автономные инверторы
- •34.2 Трёхфазные автономные инверторы
- •34.3. Гармонический состав выходного напряжения трёхфазного инвертора
- •34.4 Трёхфазные тиристорные автономные инверторы
- •34.5 Многоуровневые инверторы
- •34.6 Выпрямительный режим работы автономных инверторов
- •34.7 Основные характеристики инверторов
- •Библиографический список
- •1 Основная литература
- •2 Дополнительная литература
- •3 Периодические издания
I'1апер, i2апер, I'0апер – кривые апериодической составляющей первичного, вторичного тока и апериодической составляющей намагничивающего тока
Работа ТТ при
разомкнутой вторичной обмотке. При
эксплуатации
ТТ возможны случаи, когда вторичная
обмотка(
)
оказывается разомкнутой. В нормальном
режиме:МДСIQw1
составляет
проценты или даже доли процента МДС F1.
Амплитуда магнитной индукции составляет
0,06—0,1 Тл.
При размыкании вторичной обмотки F2 = 0 и размагничивающее действие вторичной МДС прекращается. Ток в первичной цепи остается неизменным, и первичная МДС целиком идет на намагничивание магнитопровода. Это приводит к его насыщению и появлению высокой ЭДС на разомкнутой вторичной обмотке.
Рис. 111. Изменение индукции В и вторичной ЭДС е2 во времени при разомкнутой вторичной обмотке
Примерные кривые изменения индукции В и вторичной ЭДС е2 показаны на рис. 111. Чем больше первичная номинальная МДС I1НОМw1, тем больше амплитудное значение е2, которое может достигать десятка киловольт. Такое напряжение опасно для изоляции трансформатора и обслуживающего персонала.
При насыщении магнитопровода в нем резко возрастают активные потери, за счет которых температура изоляции может существенно превысить допустимые значения.
Режим разомкнутой вторичной обмотки является для трансформатора тока аварийным, что необходимо предусматривать при проектировании цепей релейной защиты. Обычно вторичная обмотка выводится на дополнительные контакты К с перемычкой (см. рис. 112). Перед отключением от вторичной обмотки измерительного прибора она вначале шунтируется этой перемычкой.
Рис. 112. Схема включения трансформатора тока
26.4 Конструкция и принцип действия трансформаторов тока, физические явления в электрическом аппарате
Конструкции трансформаторов тока весьма разнообразны. При этом они состоят из замкнутого магнитопровода с соответствующими обмотами и корпуса. Магнитопровод может быть прямоугольный шихтованный или тороидальный, навитый из ленты. Трансформатор может иметь несколько магнитопроводов 2 (рис. 113, а). При напряжениях до 35 кВ магнитопровод может служить опорой трансформатора. Вторичные обмотки 3 всегда многовитковые. Первичная обмотка 4 может быть многовитковой (обычно на токи до 400 А) или одновитковой на токи от 600 А и выше. В последнем случае витком служит шина или стержень, проходящие через окно магнитопровода (проходной ТТ - рис. 113, б). Этим же витком может служить шина распределительного устройства, пропускаемая через то же окно трансформатора (шинный ТТ — рис. 113, в).
Обмотки могут выполняться из изолированного или голого медного провода. Для напряжений до 35 кВ широкое распространение получила изоляция первичной обмотки от вторичной и от заземленных деталей литым компаундом на основе эпоксидной смолы. Литой изоляционный корпус 1 (рис. 113, а) защищает первичную и вторичную обмотки от возможных механических повреждений и проникновения влаги. Применение литой эпоксидной изоляции позволяет сильно упростить конструкцию и технологию производства.
Рис. 113. Трансформаторы тока с литой компаундной изоляцией: а — проходной опорный
катушечный; б — проходной одновитковыи; в — шинный
Л1, Л2 — первичная обмотка; И1, И2 — вторичная обмотка
Электродинамическая стойкость одновитковых ТТ достаточно высока, т.к. на первичную обмотку действуют силы только от подводящих шин и соседних фаз. Недостаток одновитковых ТТ заключается в большой погрешности при малом номинальном первичном токе, поскольку w1 = 1. Поэтому одновитковые ТТ применяются при токах 400 А и более.
Одновитковые ТТ могут быть встроенными. В этом случае используются токоведущий стержень и изолятор другого аппарата или оборудования (выключателя, силового трансформатора, проходного изолятора и др.).
На проходном изоляторе встроенных ТТ, как правило, устанавливается несколько ТТ, вторичные обмотки которых можно соединять последовательно или параллельно. При последовательном соединении вторичных обмоток коэффициент трансформации не изменяется, так как удваивается число первичных и вторичных витков. Вторичный ток сохраняется неизменным, а вторичная ЭДС удваивается, что позволяет увеличить в 2 раза вторичную мощность. Для встроенных ТТ это очень важно, так как они удалены от реле и измерительных приборов, благодаря чему сопротивление соединяющих проводов получается большим. При параллельном соединении вторичных обмоток коэффициент трансформации уменьшается, так как первичные обмотки включаются последовательно. При этом вторичный ток двух ТТ увеличивается. Это дает возможность получить вторичный ток, приближающийся к стандартному значению 5 А, например при первичном токе I1ном =200 А.
Вторичные обмотки имеют отводы, которые позволяют в небольшом диапазоне регулировать коэффициент трансформации.
При малых первичных токах (ниже 400 А) для получения высокого класса точности применяются многовитковые ТТ.
При напряжении 35 кВ и выше для открытых установок применяются ТТ с масляной изоляцией.
С ростом номинального
напряжения стоимость ТТ возрастает
примерно пропорционально квадрату
напряжения, в основном за счёт изоляции.
Поэтому при напряжении Uном
220 кВ применяют каскадную схему включения
ТТ. На рис. 8.1.7 показана схема включения
обмоток двухступенчатого каскадного
ТТ.
Рис. 114. Принципиальная схема двухступенчатого каскадного ТТ
Вторичная обмотка первого ТТ питает первичную обмотку второго. Стоимость возрастает в 2 раза, а не в 4.
В связи с повышением Uном до 1150 кВ и выше представляется целесообразным переход на ТТ с оптико-электронной системой. Однако вследствие сложности такой системы пока широкого применения не получили.