Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Управленческие решения / управления запасами_контрольная.doc
Скачиваний:
22
Добавлен:
16.03.2016
Размер:
156.16 Кб
Скачать

2.5.4. Простая вероятностная модель.

При построении этой модели штрафы, связанные с дефицитом запасов, считаются конечными, и данная модель имеет следующие особенности:

  1. Спрос и пополнение запасов оцениваются на основе опытных данных.

  2. Рассматривается производство и потребление дискретного продукта.

  3. Распределения по времени спроса и заказов на пополнение дискретные и неравномерные.

  4. Известно и постоянно время выполнения заказов.

Здесь учитываются только расходы на приобретение запасных деталей, которые могут оказаться лишними, и убытки, возникающие при их нехватке.

Пусть спрос r является случайной величиной и задан закон (ряд) распределения (r). Тогда запасу в s деталей будут соответствовать следующие затраты: (s – r)с2, если r  s , т.е. запас оказался чрезмерным, и (r – s)с3, если s  r , т.е. запасных деталей не хватило. Тогда среднее значение суммарных затрат (математическое ожидание) имеет вид:

C(s) = с2s – r) (r) + с3r – s)(r). (2.5.11)

Задача управления запасами при вероятностном спросе состоит в отыскании такого запаса s*, при котором математическое ожидание суммарных затрат (2.5.11) принимает минимальное значение.

Опуская доказательство, получаем, что значение s* должно удовлетворять неравенствам

P(s* – 1)  с3 /(с2 + с3)  P(s*), (2.5.12)

где P(s) =(r) – эмпирическая функция распределения спроса (вероятность того, что спрос r  s).

Пример 2.5.4. Пусть стоимость одной детали, если ее заказывать заранее, составляет 100 руб. Отсутствие этой детали в запасе при поломке приводит к простою оборудования и срочный заказ детали обходится в 200 руб. Опытные данные о частоте выхода этой детали из строя приведены в табл. 2.5.1.

Таблица 2.5.1.

Потребовалось запасных

деталей (r)

0

1

2

3

4

5

Итого

Сколько случаев потребовало

данное число деталей

20

40

50

40

30

20

200

Эмпирическая вероятность (r)

0.10

0.20

0.25

0.20

0.15

0.10

1

Эмпирическая вероятность (r) – это доля случаев, когда спрос равен r. Подсчитаем значение с3 /(с2 + с3) = 200/(100 + 200) = 0.67.

Оптимальное решение получается в результате построения эмпирической функции распределения спроса, которая показывает долю случаев, когда спрос меньше либо равен r. (табл. 2.5.2).

Таблица 2.5.2

s

0

1

2

3

4

5

P(s)

0.10

0.30

0.55

0.75

0.90

1.00

Так как P(2) = 0.55  0.67  0.75 = P(3), то оптимальное значение s*= 3.

Полученным аналитическим решением можно воспользоваться для оценки потерь, возникающих при недостаточных запасах. Предположим, что нам неизвестна зависимость штрафа от размера дефицита, а уровень запасов, который предприниматель стремится поддерживать, равен трем деталям. Для какого штрафа этот уровень запасов будет оптимальным? Подставляя в (2.5.12) s* = 3, получим

P(2)  с3 /(с2 + с3)  P(3),

0.55  с3 /(100 + с3)  0.75.

Определим минимальное значение с3:

с3/(100 + с3) = 0.55, откуда с3 = 122.

Определим максимальное значение с3:

с3 /(100 + с3) = 0.75, откуда с3 = 300.

Следовательно, предприниматель считает, что размер штрафа за дефицит заключен в пределах от 122 до 300 руб.

Заключение. Общее решение задачи выбора оптимальных размеров и сроков размещения заказов на запасаемую продукцию нельзя получить на основе одной модели. Мы рассмотрели некоторые простые частные случаи. В реальных условиях потери от дефицита обычно сложно оценить, так как они могут быть обусловлены нематериальными факторами. С другой стороны, хотя оценку затрат на оформление заказа получить нетрудно, включение в модель этих расходов существенно усложняет математическое описание задачи.

Соседние файлы в папке Управленческие решения