Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Импульсные и цифровые системы управления / Кафедра «Системы автоматического управления». С.А. Руднев. Импульсные и цифровые системы управления..doc
Скачиваний:
244
Добавлен:
21.01.2014
Размер:
3.68 Mб
Скачать

Лекция № 11

Тема:

Частотные критерии устойчивости импульсных систем.

План лекции:

1. Аналог критерия Михайлова.

2. Анализ устойчивости с помощью критерия Найквиста.

3. Анализ устойчивости импульсной системы с помощью ЛАФПЧХ.

.

1. Аналог критерия Михайлова.

Частотные критерии устойчивости удобно применять к системам высокого порядка. Одним из распространенных критериев устойчивости непрерывных систем является критерий Михайлова. Для импульсных систем можно сформулировать аналог этого критерия.

Пусть характеристическое уравнение замкнутой импульсной системы имеет вид

В соответствии с принципом аргумента [3] число корней характеристического многочлена, лежащих внутри единичной окружности, равно числу полных оборотов вектора при обходе точкойzединичной окружности, т.е.

.

Очевидно, что если m = n, то все корни удовлетворяют соотношению

и система устойчива.

Наибольшую сложность при использовании этого критерия представляет нахождение отображения единичной окружности на плоскости B. При этом рассматривать многочлен B(z) в функции z неудобно, так как аргумент z меняется сложным образом. Проще перейти к переменной по формуле. При этом движению точкиzпо единичной окружности соответствует изменениев следующих пределах:

Таким образом, рассматривается функция и строится ее годограф в пределах. Так как имеет место соотношение

,

то годограф при изменениив пределахсимметричен относительно оси абсцисс. Отсюда следует, что можно рассматривать лишь полуветвь годографа, соответствующую половине исходного диапазона. При этом приращение аргумента функциитакже уменьшится вдвое, т.е.;

Примеры годографов, соответствующих устойчивым системам при n =1,2, 3, показаны на рис.25.

Рис.25.

2. Анализ устойчивости с помощью критерия Найквиста.

Анализ устойчивости импульсных систем может быть выполнен также с помощью критерия Найквиста, который основан на использовании частотных характеристик разомкнутой системы. Рассмотрим простейшую схему замкнутой системы, представленную на рис.10. Пусть - частотная характеристика разомкнутой импульсной системы. Приведем формулировку критерия Найквиста без доказательства.

Пусть характеристическое уравнение разомкнутой импульсной системы имеет lкорней вне единичного круга плоскостиz. Для того, чтобы была устойчива замкнутая импульсная система, необходимо и достаточно, чтобы годографпри измененииот 0 доохватывал точку) на комплексной плоскости W ровноl/2 раз, т.е.

,

.

Пусть разомкнутая система устойчива. Тогда годограф 1 на рис.26 соответствует системе, устойчивой в замкнутом состоянии, а годограф 2 - системе, неустойчивой в замкнутом виде.

Рис. 26

Случай, когда передаточная функция W(z) разомкнутой системы имеет полюса на единичной окружности плоскости z, относится к числу особых. В этом случае необходимо дополнить годограф частотной характеристики разомкнутой системы дугой бесконечного радиуса аналогично тому, как это делалось при исследовании непрерывных систем. Обычно полюсами, лежащими на единичной окружности, оказываются полюса z=1, что соответствует наличию полюсов p=0 (интегрирующих звеньев) в передаточной функции ПНЧ. При этом годограф АФЧХ разомкнутой системы дополняется дугой бесконечного радиуса, охватывающей столько квадрантов, каков порядок полюса z=1.

Пусть l=0 и разомкнутая система имеет полюс z=1 второго порядка. Годограф АФЧХ, представленный на рис.27а, соответствует системе, неустойчивой в замкнутом состоянии, на рис.27б - системе, устойчивой в замкнутом виде.

Рис.27а Рис.27б.