
- •4 Конспекты лекций к дисциплине «Беспроводные технологии передачи измерительной информации»
- •Глоссарий
- •Общие принципы построения сетей
- •Методы передачи дискретных данных на физическом уровне
- •Линии связи
- •Аппаратура линий связи
- •Характеристики линий связи
- •Типы кабелей
- •Кабели типа Витая пара (twisted pair, tp)
- •Волоконно–оптический кабель
- •Методы передачи дискретных данных на физическом уровне
- •Аналоговая модуляция
- •Методы аналоговой модуляции
- •Цифровое физическое кодирование
- •Логическое кодирование
- •Скрэмблирование
- •Методы передачи данных канального уровня
- •Асинхронные протоколы
- •Синхронные символьно-ориентированные и бит-ориентированные протоколы
- •Бит–ориентированные протоколы
- •Протоколы с гибким форматом кадра
- •Передача с установлением соединения и без установления соединения
- •Обнаружение и коррекция ошибок
- •Методы обнаружения ошибок
- •Методы восстановления искаженных и потерянных кадров
- •Компрессия данных
- •Методы коммутации
- •Коммутация каналов
- •Коммутация каналов на основе частотного мультиплексирования
- •Коммутация каналов на основе разделения времени
- •Общие свойства сетей с коммутацией каналов
- •Коммутация пакетов
- •Виртуальные каналы в сетях с коммутацией пакетов
- •Пропускная способность сетей с коммутацией пакетов
- •Коммутация сообщений
- •Беспроводные сети wifi
- •Основные элементы сети wifi
- •Основы передачи данных в беспроводных сетях
- •Сигналы для передачи информации
- •Передача данных
- •Модуляция сигналов
- •Пропускная способность канала
- •Методы доступа к среде в беспроводных сетях
- •Технология расширения спектра
- •Кодирование и защита от ошибок
- •Методы коррекции ошибок
- •Методы автоматического запроса повторной передачи
- •Архитектура стандарта 802.11
- •Стек протоколов ieee 802.11
- •Уровень доступа к среде стандарта 802.11
- •Распределенный режим доступа dcf
- •Централизованный режим доступа pcf
- •Кадр mac-подуровня
- •Реализация стандартов ieee 802.11
- •Ieee 802.11
- •Передача в диапазоне инфракрасных волн
- •Беспроводные локальные сети со скачкообразной перестройкой частоты (fhss)
- •Беспроводные локальные сети, использующие широкополосную модуляцию dsss с расширением спектра методом прямой последовательности
- •Ieee 802.11b
- •Ieee 802.11a
- •Ieee 802.11g
- •Ieee 802.11d
- •Ieee 802.11e
- •Ieee 802.11f
- •Ieee 802.11h
- •Ieee 802.11i
- •Ieee 802.11n
- •Режимы и особенности их организации
- •Режим Ad Hoc
- •Инфраструктурный режим
- •Режимы wds и wds With ap
- •Режим повторителя
- •Режим клиента
- •Организация и планирование беспроводных сетей
- •Угрозы и риски безопасности беспроводных сетей
- •Основы криптографии
- •Базовые термины и их определения
- •Криптография
- •Протоколы безопаснисти беспроводных сетей
- •Механизм шифрования wep
- •Потоковое шифрование
- •Блочное шифрование
- •Вектор инициализации (Initialization Vector, IV)
- •Обратная связь
- •Уязвимость шифроваия wep
- •Пассивные сетевые атаки
- •Активные сетевые атаки
- •Аутенфикация в беспроводных сетях
- •Стандарт ieee 802.11 сети с традиционной безопасностью
- •Принцип аутентификации абонента в ieee 802.11
- •Открытая аутентификация
- •Аутентификация с общим ключом
- •Аутентификация по mac-адресу
- •Уязвимость механизмов аутентификации 802.11
- •Проблемы идентификатора беспроводной лвс
- •Уязвимость открытой аутентификации
- •Уязвимость аутентификации с общим ключом
- •Уязвимость аутентификации по mac-адресу
- •Спецификация wpa
- •Пофреймовое изменение ключей шифрования
- •Контроль целостности сообщения
- •Стандарт сети 802.11i с повышенной безопасностью (wpa2)
- •Стандарт 802.1x/eap (enterprise-Режим)
- •Архитектура ieee 802.1x
- •Механизм аутентификации
- •Технологии целостности и конфиденциальности передаваемых данных
- •Развертывание беспроводных виртуальных сетей
- •Топология сеть-сеть
- •Топология хост-сеть
- •Топология хост-хост
- •Распространенные туннельные протоколы
- •Протокол ipSec
- •Протокол рртр
- •Протокол l2tp
- •Системы обнаружения вторжения в беспроводные сети
- •Общая характеристика Personal Area Network
- •Стандарт технологии bluetooth (ieee 802.15.1)
- •Общие сведения
- •Архитектура bluetooth Метод частотных скачков
- •Понятие пикосети
- •Адрес Bluetooth-устройства (bd_addr)
- •Состояния Bluetooth
- •Физические каналы
- •Процедура опроса
- •Типы трафика
- •Транспортная архитектура
- •Режимы работы Bluetooth
- •Форматы пакетов bluetooth
- •Типы пакетов
- •Стек протоколов bluetooth
- •Модели использования
- •Профили Bluetooth
- •Методы безопасности
- •Уровни надежности устройства.
- •Перспективы развития технологии: bluetooth 4.0.
- •Беспроводная сенсорная сеть zigbee®
- •Общие сведения
- •Топология беспроводных персональных сетей
- •Адресация в персональных сетях ZigBee
- •Современные реализации сетей на основе технологии ZigBee Ведущие производители оборудования ZigBee
- •Пример реализации сенсорной сети
- •Библиографическое описание
Волоконно–оптический кабель
Физические особенности.
1. Широкополосность оптических сигналов, обусловленная чрезвычайно высокой частотой несущей (Fo=10**14 Гц). Это означает, что по оптической линии связи можно передавать информацию со скоростью порядка 10**12 бит/с или Терабит/с. Говоря другими словами, по одному волокну можно передать одновременно 10 миллионов телефонных разговоров и миллион видеосигналов. Скорость передачи данных может быть увеличена за счет передачи информации сразу в двух направлениях, так как световые волны могут распространяться в одном волокне независимо друг от друга. Кроме того, в оптическом волокне могут распространяться световые сигналы двух разных поляризаций, что позволяет удвоить пропускную способность оптического канала связи. На сегодняшний день предел по плотности передаваемой информации по оптическому волокну не достигнут.
2. Очень малое (по сравнению с другими средами) затухание светового сигнала в волокне. Лучшие образцы российского волокна имеют затухание 0.22 дБ/км на длине волны 1.55 мкм, что позволяет строить линии связи длиной до 100 км без регенерации сигналов. Для сравнения, лучшее волокно Sumitomo на длине волны 1.55 мкм имеет затухание 0.154 дБ/км. В оптических лабораториях США разрабатываются еще более «прозрачные», так называемые фторцирконатные волокна с теоретическим пределом порядка 0.02 дБ/км на длине волны 2.5 мкм. Лабораторные исследования показали, что на основе таких волокон могут быть созданы линии связи с регенерационными участками через 4600 км при скорости передачи порядка 1 Гбит/с.
Технические особенности.
1.Волокно изготовлено из кварца, основу которого составляет двуокись кремния, широко распространенного, а потому недорогого материала, в отличие от меди.
2. Оптические волокна имеют диаметр около 100 мкм., то есть очень компактны и легки, что делает их перспективными для использования в авиации, приборостроении, в кабельной технике.
3. Стеклянные волокна – не металл, при строительстве систем связи автоматически достигается гальваническая развязка сегментов. Применяя особо прочный пластик, на кабельных заводах изготавливают самонесущие подвесные кабели, не содержащие металла и тем самым безопасные в электрическом отношении. Такие кабели можно монтировать на мачтах существующих линий электропередач, как отдельно, так и встроенные в фазовый провод, экономя значительные средства на прокладку кабеля через реки и другие преграды.
4. Системы связи на основе оптических волокон устойчивы к электромагнитным помехам, а передаваемая по световодам информация защищена от несанкционированного доступа. Волоконно–оптические линии связи нельзя подслушать неразрушающим способом. Всякие воздействия на волокно могут быть зарегистрированы методом мониторинга (непрерывного контроля) целостности линии. Теоретически существуют способы обойти защиту путем мониторинга, но затраты на реализацию этих способов будут столь велики, что превзойдут стоимость перехваченной информации.
Существует способ скрытой передачи информации по оптическим линиям связи. При скрытой передаче сигнал от источника излучения модулируется не по амплитуде, как в обычных системах, а по фазе. Затем сигнал смешивается с самим собой, задержанным на некоторое время, большее, чем время когерентности источника излучения.
При таком способе передачи информация не может быть перехвачена амплитудным приемником излучения, так как он зарегистрирует лишь сигнал постоянной интенсивности.
Для обнаружения перехватываемого сигнала понадобится перестраиваемый интерферометр Майкельсона специальной конструкции. Причем, видность интерференционной картины может быть ослаблена как 1:2N, где N – количество сигналов, одновременно передаваемых по оптической системе связи. Можно распределить передаваемую информацию по множеству сигналов или передавать несколько шумовых сигналов, ухудшая этим условия перехвата информации. Потребуется значительный отбор мощности из волокна, чтобы несанкционированно принять оптический сигнал, а это вмешательство легко зарегистрировать системами мониторинга.
5.Важное свойство оптического волокна – долговечность. Время жизни волокна, то есть сохранение им своих свойств в определенных пределах, превышает 25 лет, что позволяет проложить оптико–волоконный кабель один раз и, по мере необходимости, наращивать пропускную способность канала путем замены приемников и передатчиков на более быстродействующие.
Есть в волоконной технологии и свои недостатки:
1. При создании линии связи требуются высоконадежные активные элементы, преобразующие электрические сигналы в свет и свет в электрические сигналы. Необходимы также оптические коннекторы (соединители) с малыми оптическими потерями и большим ресурсом на подключение–отключение. Точность изготовления таких элементов линии связи должна соответствовать длине волны излучения, то есть погрешности должны быть порядка доли микрона. Поэтому производство таких компонентов оптических линий связи очень дорогостоящее.
2. Другой недостаток заключается в том, что для монтажа оптических волокон требуется прецизионное, а потому дорогое, технологическое оборудование.
3. Как следствие, при аварии (обрыве) оптического кабеля затраты на восстановление выше, чем при работе с медными кабелями.
Преимущества от применения волоконно–оптических линий связи (ВОЛС) настолько значительны, что несмотря на перечисленные недостатки оптического волокна, эти линии связи все шире используются для передачи информации.
Оптическое волокно
Промышленность многих стран освоила выпуск широкой номенклатуры изделий и компонентов ВОЛС. Следует заметить, что производство компонентов ВОЛС, в первую очередь оптического волокна, отличает высокая степень концентрации. Большинство предприятий сосредоточено в США. Обладая главными патентами, американские фирмы (в первую очередь это относится к фирме «CORNING») оказывают влияние на производство и рынок компонентов ВОЛС во всем мире, благодаря заключению лицензионных соглашений с другими фирмами и созданию совместных предприятий.
Важнейший из компонентов ВОЛС – оптическое волокно. Для передачи сигналов применяются два вида волокна: одномодовое и многомодовое. Свое название волокна получили от способа распространения излучения в них. Волокно состоит из сердцевины и оболочки с разными показателями преломления n1 и n2.
|
Рисунок 1.14 Важнейший
из компонентов ВОЛС – оптическое
волокно. Для передачи сигналов
применяются два вида волокна:
одномодовое и многомодовое. Свое
название волокна получили от способа
распространения излучения в них.
Волокно состоит из сердцевины и
оболочки с разными показателями
преломления n1 и n2. В одномодовом волокне диаметр световодной жилы порядка 8–10 мкм, то есть сравним с длиной световой волны. При такой геометрии в волокне может распространяться только один луч (одна мода). В многомодовом волокне размер световодной жилы порядка 50–60 мкм, что делает возможным распространение большого числа лучей (много мод). |
Оба типа волокна характеризуются двумя важнейшими параметрами: затуханием и дисперсией. Затухание обычно измеряется в дБ/км и определяется потерями на поглощение и на рассеяние излучения в оптическом волокне. Потери на поглощение зависят от чистоты материала, потери на рассеяние зависят от неоднородностей показателя преломления материала.
|
Рисунок 1.15
Затухание зависит от длины волны излучения, вводимого в волокно. В настоящее время передачу сигналов по волокну осуществляют в трех диапазонах: 0.85 мкм, 1.3 мкм, 1.55 мкм, так как именно в этих диапазонах кварц имеет повышенную прозрачность. |
|
|
Другой важнейший параметр оптического волокна – дисперсия. Дисперсия – это рассеяние во времени спектральных и модовых составляющих оптического сигнала. Существуют три типа дисперсии: модовая, материальная и волноводная.
модовая дисперсия присуща многомодовому волокну и обусловлена наличием большого числа мод, время распространения которых различно
материальная дисперсия обусловлена зависимостью показателя преломления от длины волны
волноводная дисперсия обусловлена процессами внутри моды и характеризуется зависимостью скорости распространения моды от длины волны.
Поскольку светодиод или лазер излучает некоторый спектр длин волн, дисперсия приводит к уширению импульсов при распространению по волокну и тем самым порождает искажения сигналов. При оценке пользуются термином «полоса пропускания» – это величина, обратная к величине уширения импульса при прохождении им по оптическому волокну расстояния в 1 км. Измеряется полоса пропускания в МГц*км. Из определения полосы пропускания видно, что дисперсия накладывает ограничение на дальность передачи и на верхнюю частоту передаваемых сигналов.
Если при распространении света по многомодовому волокну как правило преобладает модовая дисперсия, то одномодовому волокну присущи только два последних типа дисперсии. На длине волны 1.3 мкм материальная и волноводная дисперсии в одномодовом волокне компенсируют друг друга, что обеспечивает наивысшую пропускную способность.
Затухание и дисперсия у разных типов оптических волокон различны. Одномодовые волокна обладают лучшими характеристиками по затуханию и по полосе пропускания, так как в них распространяется только один луч. Однако, одномодовые источники излучения в несколько раз дороже многомодовых. В одномодовое волокно труднее ввести излучение из-за малых размеров световодной жилы, по этой же причине одномодовые волокна сложно сращивать с малыми потерями. Оконцевание одномодовых кабелей оптическими разъемами также обходится дороже.
Многомодовые волокна более удобны при монтаже, так как в них размер световодной жилы в несколько раз больше, чем в одномодовых волокнах. Многомодовый кабель проще оконцевать оптическими разъемами с малыми потерями (до 0.3 dB) в стыке. На многомодовое волокно расчитаны излучатели на длину волны 0.85 мкм – самые доступные и дешевые излучатели, выпускаемые в очень широком ассортименте. Но затухание на этой длине волны у многомодовых волокон находится в пределах 3–4 dB/км и не может быть существенно улучшено. Полоса пропускания у многомодовых волокон достигает 800 МГц*км, что приемлемо для локальных сетей связи, но не достаточно для магистральных линий.
Волоконно–оптический кабель
Вторым важнейшим компонентом, определяющим надежность и долговечность ВОЛС, является волоконно–оптический кабель (ВОК). На сегодня в мире несколько десятков фирм, производящих оптические кабели различного назначения. Наиболее известные из них: AT&T, General Cable Company (США); Siecor (ФРГ); BICC Cable (Великобритания); Les cables de Lion (Франция); Nokia (Финляндия); NTT, Sumitomo (Япония), Pirelli(Италия).
Определяющими параметрами при производстве ВОК являются условия эксплуатации и пропускная способность линии связи.
По условиям эксплуатации кабели подразделяют на:
монтажные
станционные
зоновые
магистральные
Первые два типа кабелей предназначены для прокладки внутри зданий и сооружений. Они компактны, легки и, как правило, имеют небольшую строительную длину.
Кабели последних двух типов предназначены для прокладки в колодцах кабельных коммуникаций, в грунте, на опорах вдоль ЛЭП, под водой. Эти кабели имеют защиту от внешних воздействий и строительную длину более двух километров.
Для обеспечения большой пропускной способности линии связи производятся ВОК, содержащие небольшое число (до 8) одномодовых волокон с малым затуханием, а кабели для распределительных сетей могут содержать до 144 волокон как одномодовых, так и многомодовых, в зависимости от расстояний между сегментами сети.
При изготовлении ВОК в основном используются два подхода:
конструкции со свободным перемещением элементов
конструкции с жесткой связью между элементами
По видам конструкций различают кабели повивной скрутки, пучковой скрутки, кабели с профильным сердечником, а также ленточные кабели. Существуют многочисленные комбинации конструкций ВОК, которые в сочетании большим ассортиментом применяемых материалов позволяют выбрать исполнение кабеля, наилучшим образом удовлетворяющее всем условиям проекта, в том числе – стоимостным.
Особый класс образуют кабели, встроенные в грозотрос.
Отдельно рассмотрим способы сращивания строительных длин кабелей.
Сращивание строительных длин оптических кабелей производится с использованием кабельных муфт специальной конструкции. Эти муфты имеют два или более кабельных ввода, приспособления для крепления силовых элементов кабелей и одну или несколько сплайс–пластин.
Волоконно–оптический кабель имеет следующие характеристики:
• Стоимость. Волоконно–оптический кабель обходится несколько дороже, чем медный, но эта стоимость быстро снижается. Между тем, сопутствующие затраты на оборудование здесь намного выше, чем для медного кабеля, что делает технологию волоконно–оптической связи значительно более дорогой. Устройства одномодовой волоконной оптики дороже и сложнее в инсталляции, чем многомодовые устройства.
• Установка. Волоконно–оптический кабель сложнее, прокладывать, чем медный. Каждое соединение и стык такого кабеля требуют тщательной работы, поскольку свет не должен встречаться в таких местах с каким–либо препятствием. Кроме того, волоконно–оптический кабель имеет максимальный радиус изгиба, что существенно усложняет его прокладку. Зато такой кабель не подвержен коррозии.
• Пропускная способность. Благодаря использованию света, который имеет большую частоту, чем , .электрические, сигналы, волоконно–оптический кабель может обеспечивать чрезвычайно высокую пропускную способность. Существующие технологии позволяют передавать по нему данные со скоростью от 100 Мбит/с до 2 Гбит/с. скорость передачи данных зависит от режима и длины световой волны (частоты). Типичные многомодовые инсталляции поддерживают передачу 100 Мбит/сек на расстояние до нескольких километров. Широкополосные кабели идеально подходят для передачи трафика с критическими требованиями к скорости передачи (видеоданные).
• Число узлов. Поскольку волоконно–оптическим кабелем можно соединить только два компьютера, число узлов волоконно–оптической сети ограничивает не кабель. Оно определяется концентраторами, соединяющими эти кабели. В сети Ethernet полезный верхний предел составляет 75 узлов на один домин. Волоконно–оптические сети, где применяются другие протоколы, обычно используют оптический кабель как базовую магистраль, соединяющую медленные локальные сети, и поэтому компьютеры или другие устройства непосредственно на этом кабеле не размещаются.
• Затухание. Волоконно–оптический кабель дает на много меньше затухание, чем медный, поскольку свет не излучается вне кабеля, как электрический сигнал в медных проводах. Волоконно–оптические кабели способны переносить сигнал на расстояние, измеряемое ' километрами. Несмотря на малое затухание, в волоконной оптике свойственна другая проблема – хроматическая дисперсия.
Волны света различной длины стекло пропускает по–разному, поэтому импульс света, проходя через кабель «размазывается». Получается эффект радуги – световой сигнал разделяется на цветовые компоненты. На расстоянии несколько – километров он может «залезть» в следующий бит, что приведет к потере данных.
В одномодовых кабелях передается свет одной частоты, поэтому здесь нет эффекта хроматической дисперсии. Одномодовый волоконно–оптический кабель можно использовать для прокладки сетевых магистралей длиной в сотни километров (LAN – 3 км; WAN – через всю страну с use мощных лазеров).
• Электромагнитные помехи. Волоконно–оптический кабель не подвержен электромагнитным помехам. Кроме того, он не дает утечки сигнала, не излучает сигнал во вне, к такому кабелю практически невозможно подключится. Это значительно осложняет перехват информации. Поскольку такой кабель не требует заземления, здесь нет проблемы сдвига электрического потенциала земли и искрения такой кабель можно использовать во взрывоопасных средах.
Такой кабель идеально подходит для восоковольтных зон и там, где нужна высокая степень защиты информации.
Волоконно–оптический кабель более гибкий, чем обычный коаксиальный кабель (но, тем не менее, обращаться с ним надо осторожно, особенно если он выполнен на стеклянной основе). К его преимуществам следует отнести устойчивость к помехам, создаваемым окружающей средой. Наибольшим преимуществом волоконно–оптического кабеля является объем информации, который он способен переносить.