Скачиваний:
105
Добавлен:
21.01.2014
Размер:
566.78 Кб
Скачать

Статистический эксперимент для оценки значимости и ее прямое вычисление

Что же делать, когда количество наблюдений не позволяет воспользоваться аппроксимацией распределения статистики CHISQ распределением хи-квадрат? В действительности нормальная аппроксимация необходима лишь для того, чтобы можно было вычислить вероятность P{CHISQтеор.>CHISQвыбороч.}. То, что CHISQтеор. имеет распределение хи-квадрат - лишь техническая подробность, связанная с упрощением и ускорением вычислений. То же касается и других статистик значимости (CTAU, BTAU). Современная вычислительная техника позволяет во многих случаях обойтись без использования аппроксимации, вычислить вероятности за счет имитации сбора данных в условиях независимости (метод Монте-Карло) или воспользовавшись непосредственным вычислением вероятности.

В многих процедурах SPSS, в том числе и в Crosstabs, реализованы метод Монте-Карло и прямое вычисление вероятностей.

В методе Монте-Карло проводятся компьютерные эксперименты, в которых многократно случайно перемешиваются данные. В каждом эксперименте вычисляется значение статистики значимости и сравнивается с наблюдаемой ее величиной. Доля случаев, когда статистика превысила наблюдаемое значение, является оценкой уровня значимости. Поскольку оценка вычисляется на основе случайных экспериментов, в дополнеие к оценке уровня значимости выдается его доверительный интервал. Число экспериментов и доверительная вероятность задается заранее.

В методе прямого вычисления рассматривается обобщение гипергеометрического распределения для таблицы сопряженности. Процедура весьма трудоемка и имеет смысл для небольших данных. Заранее задается время счета и, если программа не успела справиться с вычислениями, выдается результат, полученный на основе аппроксимаций.

В диалоговом окне Crosstabs (как, впрочем, и в окнах для других непараметрических процедур) указанные методы включаются с помощью кнопки EXACT.

Пример. Решается вопрос, как связаны "Точка зрения на иностранную помощь" и "Возможность удовлетворить территориальные требований Японии" на выборке, ограниченной жителями Дальнего Востока (276 наблюдений). Для решения используется

CROSSTABS /TABLES=v4 BY v1 /STATISTIC=CHISQ /CELLS= COUNT Row Col /METHOD=MC CIN(99) SAMPLES(10000).

Параметры последней подкоманды, "/METHOD=MC CIN(99) SAMPLES(10000)", говорят о том, что значимость оценивается методом Монте Карло (MC), будет получен 99% доверительный интервал для оценки наболюдаемой значимости (CIN(99)) с использованием 10000 экспериментов (SAMPLES(10000)).

В результате получаем таблицу 3.8, в которой размещены значимости всех исследуемых статистик. Исследуемые в статистическом эксперименте статистики включают дополнительно обобщение точного теста Фишера (Fisher's Exact Test). Статистика для этого теста имеет вид FI=-2log( P), где  - константа, зависящая от итоговых частот таблицы, а P - вероятность получить наблюдаемую таблицу в условиях независимости переменных. Статистика FI также имеет асимптотическое распределение хи-квадрат (в условиях гипотезы независимости). Следует заметить, что значимость, вычисленная на основе аппроксимации, выглядит значительно оптимистичнее с точки зрения обнаружения связи, чем при прямых вычислениях, да это и не мудрено - доля клеток, в которых ожидаемая частота меньше 5 равна 56.3%, а минимальная ожидаемая частота равна 0.47.

Опыт показывает, что точный тест на основе прямого вычисления вероятности требует очень много времени. Нашей задаче оказалось недостаточным 25 мин. на персональном компьютере с процессором 200mhz.

Таблица 3.8. Хи-квадрат тесты, оценка значимости методом Монте-Карло.

Value

Df

Asymp. Sig. (2-sided)

Monte Carlo Sig. (2-sided)

Sig.

99% Confidence Interval

Lower Bound

Upper Bound

Pearson Chi-Square

21.6

9

0.010

0.0155

0.012

0.019

Likelihood Ratio

18.9

9

0.026

0.0327

0.028

0.037

Fisher's Exact Test

19.1

0.0103

0.008

0.013

Linear-by-Linear Association

0.3

1

0.611

0.6492

0.637

0.661

N of Valid Cases

276

a 9 cells (56.3%) have expected count less than 5. The minimum expected count is .47.

Соседние файлы в папке Учебник по SPSS, учебное пособие