
- •Глава 3. Процедуры получения описательных статистик и таблиц сопряженности
- •3.1. Команды описания распределений
- •3.2 Анализ связи между неколичественными переменными. Crosstabs - таблицы сопряженности
- •Var lab w4 "Возможность удовлетворить территориториальные требования Японии".
- •Val lab w4 1 "отдать" 2 "не надо" "не знаю".
- •Cells статистики смещения частот
- •Statistics - исследование связи неколичественных перемееных
- •Измерение силы связи между номинальными переменными
- •Статистический эксперимент для оценки значимости и ее прямое вычисление
- •3.3. Сложные табличные отчеты. Таблицы для неальтернативных вопросов
- •ТипичнЫe примеРы использования Multiple Response Tables
- •Var lab m1 "Зап Сиб" m2 "Вост Сиб" m3 "Дальн Вост".
- •Var lab d1 'Жесткий вариант'
- •3.4. Множественные сравнения в таблицах для неальтернативных вопросов. Программа Typology Tables
Измерение силы связи между номинальными переменными
В условиях, когда связь значима и величина значимости (Significance) близка к нулю, появляется необходимость оценить силу этой связи и выявить наиболее связанные переменные. Непосредственное использование коэффициента Xи-квадрат неудобно - он зависит от числа объектов, из-за чего одинаковые по пропорциям распределений таблицы на выборках разного объема будут оценены по-разному.
Коэффициент Пирсона
PHI=- лишен этого недостатка, но дипазн его
изменения зависит от размерности таблиц:
.
Более устойчив к размерности выборки коэффициент контингенции:
,
0
CC<1;
еще лучше в этом отношении коэффициент Крамера
,
где к=min[r,c],
.
Все эти коэффициенты можно использовать для оценки силы связи и, сравнивая их по величине, делать вывод о более тесной или менее тесной связи. Эти коэффициенты не носят точного характера - поэтому их использование - дело вкуса каждого исследователя.
Заметим, что коэффициенты анализа связи переменных "хи-квадрат" (CHISQ), "фи" (PHI) и обычный коэффициент корреляции изобретены Пирсоном.
Коэффициенты связи между ранговыми переменными
Коэффициенты BTAU (Кендалла) и CTAU (Стюарта) служат для оценки взаимосвязи ранговых переменных.
Напомним, что ранговыми переменными называются переменные, в которых можно установить порядок между значениями, например, ответы на вопрос, требующий ответа "плохо", "средне" или "хорошо"% количественные переменные, такие, как возраст, доход, также можно использовать в качестве ранговых.
Рассмотрим пары всех объектов (строк матрицы данных). Для пары объектов (i,j) рассматривается, одинаково ли упорядочиваются объекты и по переменной X и по переменной Y. (если Xi<Xjи Yi<Yj или Xi>Xjи Yi>Yj - упорядочения одинаковы, если Xi<Xjи Yi>Yj или Xi<Xjи Yi>Yj - упорядочения не одинаковы). Число одинаковых упорядочений для всех пар объектов по X, Y обозначим Р; число разных - Q. Кендалл предложил рассматривать величину BTAU=(P-Q)/T, где T - нормирующий знаменатель, такой, чтобы величина BTAU изменялась от -1 до 1. (BTAU=-1 - полная отрицательная связь X и Y, BTAU=1 - полная положительная связь). Коэффициент CTAU несколько отличается нормирующим знаменателем. С точки зрения использования отличие их в том, что BTAU предпочтительнее использовать для квадратных таблиц сопряженности, то есть, когда r=c.
С помощью этих коэффициентов можно проверить гипотезу независимости переменных "степень противостояния СССР и Японии" и "степень альтруизма" против гипотезы их зависимости: одинаковой или противоположной упорядоченности, предварительно построив эти переменные на основе данных по нашей учебной анкете.
Пример: рассчитаем коэффициенты BTAU и CTAU для наших переменных v1 "Точка зрения на иностранную помощь" и V4 "Возможность удовлетворить территориальные требований Японии". Следует заметить, что код значения "не знаю" этих переменных максимален - 4 (см. анкету в приложении). Это нарушает порядок градаций и неясно, каким образом повлияет на результаты. Скорее всего, эта градация занимает какое-то промежуточное место, но неясно, между какими градациями. Поэтому самым простым выходом будет пожертвовать данными и провести расчеты, объявив этот код кодом неопределенности:
missing values v1 v4(4).
CROSSTABS /TABLES=v4 BY v1
/STATISTIC=CHISQ BTAU CTAU CMH(1)
/CELLS= COUNT ROW COL.
Таблица 3.7. Коэффициенты для ранговых переменных
|
Value |
Asymp. Std. Error |
Approx. T |
Approx. Sig. |
Kendall's tau-b |
-0.158 |
0.043 |
-3.571 |
0.000 |
Kendall's tau-c |
-0.094 |
0.026 |
-3.571 |
0.000 |
N of Valid Cases 606
Можно с уверенностью утверждать, что преобладает обратная связь между рангами: чем меньше желание отдать острова, тем больше преобладает мнение, что помощь необходима.