
- •Предисловие
- •Глава 1. Информация, обрабатываемая статистическим пакетом
- •1.1. Анкетные данные
- •Пример 1.1.
- •1.2. Типы переменных
- •Типы кодирования переменных.
- •Тип шкалы измерения переменных.
- •Неколичественные шкалы
- •Количественные шкалы:
- •Неальтернативные признаки
- •1.3. Имена переменных и метки, коды неопределенных значений
- •Глава 2. Статистический пакет для социологических исследований. Общее описпние и поодготовка данных
- •2.1. Структура пакета
- •2.2. Схема организации данных, окна spss
- •2.3. Управление работой пакета
- •Основные команды меню spss:
- •Статусная строка
- •Ввод данных с экрана
- •2.4. Режим диалога и командный режим
- •Командный режим работы с пакетом Основные правила написания команд на языке пакета
- •Порядок выполнения команд
- •Команды Вызова Get и сохранения данных save.
- •Основные Команды описания данных
- •Основные команды преобразования данных
- •Команды compute и if
- •Основные функции и операторы команд compute и if:
- •Работа с неопределенными значениями
- •Функции для неопределенных значений
- •Работа с пользовательскими неопределенными значениями
- •Работа с функциями Missing и Sysmis.
- •Команда recode
- •Команда count
- •Условное выполнение команд.
- •Команда rank
- •Variable labels rangv14 "ранг по доходам"/
- •V14_5 "квинтильные группы по доходам"/
- •Отбор подмножеств наблюдений
- •Команда split file
- •Взвешивание выборки weight
- •Пример 2.1
- •Variable labels oppos 'Степень противостояния ссср и Японии'
- •Value labels oppos 1 'Взаимное' 2 'Одна из сторон' 3 'Нет противостояния'.
- •2.5. Операции с файлами Агрегирование данных (команда aggregate)
- •Функции агрегирования
- •Объединение файлов (merge files)
- •Глава 4. Сравнение средних, корреляции
- •4.3. Compare Means - простые параметрические методы сравнения средних.
- •Одновыборочный тест (One sample t-test).
- •Variable labels lnv14m "логарифм промедианного дохода".
- •Двухвыборочный t-тест (independent sample t-test)
- •Двухвыборочный t-тест для связанных выборок (Paired sample t-test)
- •Команда means - сравнение характеристик числовой переменной по группам.
- •Одномерный дисперсионный анализ (oneway)
- •Множественные сравнения
- •Var lab w10 "образование".
- •Value lab w10 1 "Высшее" 2 "н/высш" 3 "ср. Спец" 4 "среднее" 5 "ниже среднего".
- •4.4. Корреляции (correlations)
- •Парные корреляции
- •Частные корреляции.
- •Глава 5. Непараметрические тесты. Команда Nonparametric tests.
- •5.1. Одновыборочные тесты
- •5.1.1. Тест Хи-квадрат
- •5.1.2. Тест, основанный на биномиальном распределении
- •5.1.3. Тест Колмогорова-Смирнова
- •5.2. Тесты сравнения нескольких выборок
- •5.2.1. Двухвыборочный тест Колмогорова-Смирнова
- •Var lab w4 "отношение к передаче островов".
- •Val lab 1 "Отдать" 2 "нет".
- •5.2.2. Тест медиан
- •5.3. Тесты для ранговых переменных
- •5.3.1. Двухвыборочный тест Манна-Уитни (Mann-Witney)-
- •5.3.2. Одномерный дисперсионный анализ Краскэла-Уоллиса (Kruskal-Wallis)
- •5.4. Тесты для связанных выборок (related samples)
- •5.4.1. Двухвыборочный критерий знаков (Sign)
- •5.4.2. Двухвыборочный знаково-ранговый критерий Вилкоксона (Wilcoxon)
- •5.4.3. Критерий Фридмана (Friedman)
- •Глава 1. Информация, обрабатываемая статистическим пакетом 120
- •Глава 2. Статистический пакет для социологических исследований. Общее описпние и поодготовка данных 124
- •Глава 4. Сравнение средних, корреляции 144
- •Глава 5. Непараметрические тесты. Команда Nonparametric tests. 154
- •6. Регрессионный анализ
- •6.1. Классическая линейная модель регрессионного анализа
- •Существует ли линейная регрессионная зависимость?
- •Коэффициенты детерминации и множественной корреляции
- •Оценка влияния независимой переменной
- •Стандартизация переменных. Бета коэффициенты
- •Надежность и значимость коэффициента регрессии
- •Значимость включения переменной в регрессию
- •Пошаговая процедура построения модели
- •Переменные, порождаемые регрессионным уравнением
- •Взвешенная регрессия
- •Команда построения линейной модели регрессии
- •Пример построения модели
- •Можно ли в регрессии использовать неколичественные переменные?
- •Взаимодействие переменных
- •6.2. Логистическая регрессия
- •Отношение шансов и логит
- •Решение уравнения с использованием логита.
- •Неколичественные данные
- •Взаимодействие переменных
- •Пример логистической регрессии и статистики
- •Качество подгонки логистической регрессии
- •Вероятность правильного предсказания
- •Коэффициенты регрессии
- •О статистике Вальда
- •Сохранение переменных
- •7. Исследование структуры данных
- •7.1. Факторный анализ
- •Метод главных компанент
- •Интерпретация факторов.
- •Оценка факторов
- •Статистические гипотезы в факторном анализе
- •Задание факторного анализа
- •7.2. Кластерный анализ
- •Иерархический кластерный анализ
- •Быстрый кластерный анализ
- •7.3. Многомерное шкалирование
- •Многомерное шкалирование
- •Качество подгонки модели
- •Вызов процедуры многомерного шкалирования
- •Исходная матрица расстояний
- •Пример построения шкал
- •Литература
- •Приложение 1. Анкета опроса общественного мнения
- •Приложение 2. Переменные файла обследования общественного мнения
О статистике Вальда
Как отмечено в документации SPSS, недостаток статистики Вальда в том, что при малом числе наблюдений она может давать заниженные оценки наблюдаемой значимости коэффициентов. Для получения более точной информации о значимости переменных можно воспользоваться пошаговой регрессией, метод FORWARD LR (LR - likelihood ratio - отношение правдоподобия), тогда будет для каждой переменной выдана значимость включения/исключения, полученная на основе отношения функций правдоподобия модели. Поскольку основная выдача построена на основе статистики Вальда, первые выводы удобнее делать на ее основе, а потом уже уточнять результаты, если это необходимо.
Сохранение переменных
Программа позволяется сохранить множество переменных, среди которых наиболее полезной является, вероятно, предсказанная вероятность.
7. Исследование структуры данных
Конечно, собирая данные, исследователь руководствуется определенными гипотезами, информация относятся к избранным предмету и теме исследования, но нередко она представляет собой сырой материал, в котором нужно изучить структуру показателей, характеризующих объекты, а также выявить однородные группы объектов. Полезно представить эту информацию в геометрическом пространстве, лаконично отразить ее особенности в классификации объектов и переменных. Такая работа создает предпосылки к созданию типологий объектов и формулированию "социального пространства", в котором обозначены расстояния между объектами наблюдения, позволяет наглядно представить свойства объектов.
7.1. Факторный анализ
Идея метода состоит в сжатии матрицы признаков в матрицу с меньшим числом переменных, сохраняющую почти ту же самую информацию, что и исходная матрица. В основе моделей факторного анализа лежит гипотеза, что наблюдаемые переменные являются косвенными проявлениями небольшого числа скрытых (латентных) факторов. Хотя такую идею можно приписать многим методам анализа данных, обычно под моделью факторного анализа понимают представление исходных переменных в виде линейной комбинации факторов.
Х1Х2.....ХnF1...Fm
┌──┬──┬──┬──┬──┐ ┌──┬──┬──┐
│ │ │ │ │ │ │ │ │ │
│ │ │ │ │ │ │ │ │ │
└──┴──┴──┴──┴──┘ └──┴──┴──┘
Рисунок 7.1 . Сжатие признакового
пространства
с применением факторного анализа
Обычно (хотя и не всегда) предполагается,
что Xiстандартизованы
(=1,Xi=0), а факторыF1,F2,…,Fmнезависимы и не связаны со специфическими
факторамиUi(хотя существуют
модели, выполненные в других предположениях).
Предполагается также, что факторыFiстандартизованы.
В этих условиях факторные нагрузки aikсовпадают с коэффициентами корреляции между общими факторами и переменнымиXi. ДисперсияXiраскладывается на сумму квадратов факторных нагрузок и дисперсию специфического фактора:
,
где
Величина
называется общностью,
- специфичностью. Другими словами,
общность представляет собой часть
дисперсии переменных, объясненную
факторами, специфичность - часть не
объясненной факторами дисперсии.
В соответствии с постановкой задачи, необходимо искать такие факторы, при которых суммарная общность максимальна, а специфичность - минимальна.