
- •Предисловие
- •Глава 1. Информация, обрабатываемая статистическим пакетом
- •1.1. Анкетные данные
- •Пример 1.1.
- •1.2. Типы переменных
- •Типы кодирования переменных.
- •Тип шкалы измерения переменных.
- •Неколичественные шкалы
- •Количественные шкалы:
- •Неальтернативные признаки
- •1.3. Имена переменных и метки, коды неопределенных значений
- •Глава 2. Статистический пакет для социологических исследований. Общее описпние и поодготовка данных
- •2.1. Структура пакета
- •2.2. Схема организации данных, окна spss
- •2.3. Управление работой пакета
- •Основные команды меню spss:
- •Статусная строка
- •Ввод данных с экрана
- •2.4. Режим диалога и командный режим
- •Командный режим работы с пакетом Основные правила написания команд на языке пакета
- •Порядок выполнения команд
- •Команды Вызова Get и сохранения данных save.
- •Основные Команды описания данных
- •Основные команды преобразования данных
- •Команды compute и if
- •Основные функции и операторы команд compute и if:
- •Работа с неопределенными значениями
- •Функции для неопределенных значений
- •Работа с пользовательскими неопределенными значениями
- •Работа с функциями Missing и Sysmis.
- •Команда recode
- •Команда count
- •Условное выполнение команд.
- •Команда rank
- •Variable labels rangv14 "ранг по доходам"/
- •V14_5 "квинтильные группы по доходам"/
- •Отбор подмножеств наблюдений
- •Команда split file
- •Взвешивание выборки weight
- •Пример 2.1
- •Variable labels oppos 'Степень противостояния ссср и Японии'
- •Value labels oppos 1 'Взаимное' 2 'Одна из сторон' 3 'Нет противостояния'.
- •2.5. Операции с файлами Агрегирование данных (команда aggregate)
- •Функции агрегирования
- •Объединение файлов (merge files)
- •Глава 4. Сравнение средних, корреляции
- •4.3. Compare Means - простые параметрические методы сравнения средних.
- •Одновыборочный тест (One sample t-test).
- •Variable labels lnv14m "логарифм промедианного дохода".
- •Двухвыборочный t-тест (independent sample t-test)
- •Двухвыборочный t-тест для связанных выборок (Paired sample t-test)
- •Команда means - сравнение характеристик числовой переменной по группам.
- •Одномерный дисперсионный анализ (oneway)
- •Множественные сравнения
- •Var lab w10 "образование".
- •Value lab w10 1 "Высшее" 2 "н/высш" 3 "ср. Спец" 4 "среднее" 5 "ниже среднего".
- •4.4. Корреляции (correlations)
- •Парные корреляции
- •Частные корреляции.
- •Глава 5. Непараметрические тесты. Команда Nonparametric tests.
- •5.1. Одновыборочные тесты
- •5.1.1. Тест Хи-квадрат
- •5.1.2. Тест, основанный на биномиальном распределении
- •5.1.3. Тест Колмогорова-Смирнова
- •5.2. Тесты сравнения нескольких выборок
- •5.2.1. Двухвыборочный тест Колмогорова-Смирнова
- •Var lab w4 "отношение к передаче островов".
- •Val lab 1 "Отдать" 2 "нет".
- •5.2.2. Тест медиан
- •5.3. Тесты для ранговых переменных
- •5.3.1. Двухвыборочный тест Манна-Уитни (Mann-Witney)-
- •5.3.2. Одномерный дисперсионный анализ Краскэла-Уоллиса (Kruskal-Wallis)
- •5.4. Тесты для связанных выборок (related samples)
- •5.4.1. Двухвыборочный критерий знаков (Sign)
- •5.4.2. Двухвыборочный знаково-ранговый критерий Вилкоксона (Wilcoxon)
- •5.4.3. Критерий Фридмана (Friedman)
- •Глава 1. Информация, обрабатываемая статистическим пакетом 120
- •Глава 2. Статистический пакет для социологических исследований. Общее описпние и поодготовка данных 124
- •Глава 4. Сравнение средних, корреляции 144
- •Глава 5. Непараметрические тесты. Команда Nonparametric tests. 154
- •6. Регрессионный анализ
- •6.1. Классическая линейная модель регрессионного анализа
- •Существует ли линейная регрессионная зависимость?
- •Коэффициенты детерминации и множественной корреляции
- •Оценка влияния независимой переменной
- •Стандартизация переменных. Бета коэффициенты
- •Надежность и значимость коэффициента регрессии
- •Значимость включения переменной в регрессию
- •Пошаговая процедура построения модели
- •Переменные, порождаемые регрессионным уравнением
- •Взвешенная регрессия
- •Команда построения линейной модели регрессии
- •Пример построения модели
- •Можно ли в регрессии использовать неколичественные переменные?
- •Взаимодействие переменных
- •6.2. Логистическая регрессия
- •Отношение шансов и логит
- •Решение уравнения с использованием логита.
- •Неколичественные данные
- •Взаимодействие переменных
- •Пример логистической регрессии и статистики
- •Качество подгонки логистической регрессии
- •Вероятность правильного предсказания
- •Коэффициенты регрессии
- •О статистике Вальда
- •Сохранение переменных
- •7. Исследование структуры данных
- •7.1. Факторный анализ
- •Метод главных компанент
- •Интерпретация факторов.
- •Оценка факторов
- •Статистические гипотезы в факторном анализе
- •Задание факторного анализа
- •7.2. Кластерный анализ
- •Иерархический кластерный анализ
- •Быстрый кластерный анализ
- •7.3. Многомерное шкалирование
- •Многомерное шкалирование
- •Качество подгонки модели
- •Вызов процедуры многомерного шкалирования
- •Исходная матрица расстояний
- •Пример построения шкал
- •Литература
- •Приложение 1. Анкета опроса общественного мнения
- •Приложение 2. Переменные файла обследования общественного мнения
Коэффициенты детерминации и множественной корреляции
При сравнении качества регрессии,
оцененной по различным зависимым
переменным, полезно исследовать доли
объясненной и необъясненной дисперсии.
Отношение SSreg/SStпредставляет собой оценку доли
необъясненной дисперсии. Доля дисперсии
зависимой переменной,
объясненной уравнением регрессии,
называется коэффициентом детерминации.
В двумерном случае коэффициент
детерминации совпадает с квадратом
коэффициента корреляции.
Корень из коэффициента детерминации
называется КОЭФФИЦИЕНТОМ МНОЖЕСТВЕННОЙ
КОРРЕЛЯЦИИ (он является коэффициентом
корреляции между yи).
Оценкой коэффициента детерминации (
)
является
.
Соответственно, величинаRявляется
оценкой коэффициента множественной
корреляции. Следует иметь в виду, что
является смещенной оценкой. Корректированная
оценка коэффициента детерминации
получается по формуле:
В этой формуле используются несмещенные оценки дисперсий регрессионного остатка и зависимой переменной.
Оценка влияния независимой переменной
Если переменные Xнезависимы между собой, то величина коэффициентаbiинтерпретируется как приростy, еслиXiувеличить на единицу.
Можно ли по абсолютной величине коэффициента судить о роли соответствующего ему фактора в формировании зависимой переменной? То есть, если b1>b2, будет лиX1важнееX2?
Абсолютные значения коэффициентов не позволяют сделать такой вывод. Однако при небольшой взаимосвязи между переменными X, если стандартизовать переменные и рассчитать уравнение регрессии для стандартизованных переменных, то оценки коэффициентов регрессии позволят по их абсолютной величине судить о том, какой аргумент в большей степени влияет на функцию.
Стандартизация переменных. Бета коэффициенты
Стандартизация переменных, т.е. замена
переменных xkнаиyна
,
приводит к уравнению
,
где k -порядковый номер независимой переменной.
Коэффициенты в последнем уравнении получены при одинаковых масштабах изменения всех переменных и сравнимы. Более того, если "независимые" переменные независимы между собой, betaкоэффициенты суть коэффициенты корреляции междуxkиy. Таким образом, в последнем случае коэффициентыbetaнепосредственно характеризуют связьxиy.
В случае взаимосвязи между аргументами в правой части уравнения могут происходить странные вещи. Несмотря на связь переменных xkиy,beta - коэффициент может оказаться равным нулю; мало того, его величина может оказаться больше единицы!
Взаимосвязь аргументов в правой части регрессионного уравнения называется мультиколлинеарностью. При наличии мультиколлинеарности переменных по коэффициентам регрессии нельзя судить о влиянии этих переменных на функцию.
Надежность и значимость коэффициента регрессии
Для изучения "механизма" действия мультиколлинеарности на регрессионные коэффициенты рассмотрим выражение для дисперсии отдельного регрессионного коэффициента
Здесь
обозначен коэффициент детерминации,
получаемый при построении уравнения
регрессии, в котором в качестве зависимой
переменной взята переменнаяxk.
Из выражения видно, что величина
коэффициента тем неустойчивее, чем
сильнее переменнаяxkсвязана с остальными переменными (чем
ближе к единице коэффициент детерминации
).
Величина 1-,
характеризующая устойчивость
регрессионного коэффициента, называется
надежностью. В англоязычной литературе
она обозначается словомTOLERANCE.
Дисперсия коэффициента позволяет получить статистику для проверки его значимости
.
Эта статистика имеет распределение Стьюдента. В выдаче пакета печатается наблюдаемая ее двусторонняя значимость - вероятность случайно при нулевом регрессионном коэффициенте Bkполучить значение статистики, большее по абсолютной величине, чем выборочное.