
- •Предисловие
- •Глава 1. Информация, обрабатываемая статистическим пакетом
- •1.1. Анкетные данные
- •Пример 1.1.
- •1.2. Типы переменных
- •Типы кодирования переменных.
- •Тип шкалы измерения переменных.
- •Неколичественные шкалы
- •Количественные шкалы:
- •Неальтернативные признаки
- •1.3. Имена переменных и метки, коды неопределенных значений
- •Глава 2. Статистический пакет для социологических исследований. Общее описпние и поодготовка данных
- •2.1. Структура пакета
- •2.2. Схема организации данных, окна spss
- •2.3. Управление работой пакета
- •Основные команды меню spss:
- •Статусная строка
- •Ввод данных с экрана
- •2.4. Режим диалога и командный режим
- •Командный режим работы с пакетом Основные правила написания команд на языке пакета
- •Порядок выполнения команд
- •Команды Вызова Get и сохранения данных save.
- •Основные Команды описания данных
- •Основные команды преобразования данных
- •Команды compute и if
- •Основные функции и операторы команд compute и if:
- •Работа с неопределенными значениями
- •Функции для неопределенных значений
- •Работа с пользовательскими неопределенными значениями
- •Работа с функциями Missing и Sysmis.
- •Команда recode
- •Команда count
- •Условное выполнение команд.
- •Команда rank
- •Variable labels rangv14 "ранг по доходам"/
- •V14_5 "квинтильные группы по доходам"/
- •Отбор подмножеств наблюдений
- •Команда split file
- •Взвешивание выборки weight
- •Пример 2.1
- •Variable labels oppos 'Степень противостояния ссср и Японии'
- •Value labels oppos 1 'Взаимное' 2 'Одна из сторон' 3 'Нет противостояния'.
- •2.5. Операции с файлами Агрегирование данных (команда aggregate)
- •Функции агрегирования
- •Объединение файлов (merge files)
- •Глава 4. Сравнение средних, корреляции
- •4.3. Compare Means - простые параметрические методы сравнения средних.
- •Одновыборочный тест (One sample t-test).
- •Variable labels lnv14m "логарифм промедианного дохода".
- •Двухвыборочный t-тест (independent sample t-test)
- •Двухвыборочный t-тест для связанных выборок (Paired sample t-test)
- •Команда means - сравнение характеристик числовой переменной по группам.
- •Одномерный дисперсионный анализ (oneway)
- •Множественные сравнения
- •Var lab w10 "образование".
- •Value lab w10 1 "Высшее" 2 "н/высш" 3 "ср. Спец" 4 "среднее" 5 "ниже среднего".
- •4.4. Корреляции (correlations)
- •Парные корреляции
- •Частные корреляции.
- •Глава 5. Непараметрические тесты. Команда Nonparametric tests.
- •5.1. Одновыборочные тесты
- •5.1.1. Тест Хи-квадрат
- •5.1.2. Тест, основанный на биномиальном распределении
- •5.1.3. Тест Колмогорова-Смирнова
- •5.2. Тесты сравнения нескольких выборок
- •5.2.1. Двухвыборочный тест Колмогорова-Смирнова
- •Var lab w4 "отношение к передаче островов".
- •Val lab 1 "Отдать" 2 "нет".
- •5.2.2. Тест медиан
- •5.3. Тесты для ранговых переменных
- •5.3.1. Двухвыборочный тест Манна-Уитни (Mann-Witney)-
- •5.3.2. Одномерный дисперсионный анализ Краскэла-Уоллиса (Kruskal-Wallis)
- •5.4. Тесты для связанных выборок (related samples)
- •5.4.1. Двухвыборочный критерий знаков (Sign)
- •5.4.2. Двухвыборочный знаково-ранговый критерий Вилкоксона (Wilcoxon)
- •5.4.3. Критерий Фридмана (Friedman)
- •Глава 1. Информация, обрабатываемая статистическим пакетом 120
- •Глава 2. Статистический пакет для социологических исследований. Общее описпние и поодготовка данных 124
- •Глава 4. Сравнение средних, корреляции 144
- •Глава 5. Непараметрические тесты. Команда Nonparametric tests. 154
- •6. Регрессионный анализ
- •6.1. Классическая линейная модель регрессионного анализа
- •Существует ли линейная регрессионная зависимость?
- •Коэффициенты детерминации и множественной корреляции
- •Оценка влияния независимой переменной
- •Стандартизация переменных. Бета коэффициенты
- •Надежность и значимость коэффициента регрессии
- •Значимость включения переменной в регрессию
- •Пошаговая процедура построения модели
- •Переменные, порождаемые регрессионным уравнением
- •Взвешенная регрессия
- •Команда построения линейной модели регрессии
- •Пример построения модели
- •Можно ли в регрессии использовать неколичественные переменные?
- •Взаимодействие переменных
- •6.2. Логистическая регрессия
- •Отношение шансов и логит
- •Решение уравнения с использованием логита.
- •Неколичественные данные
- •Взаимодействие переменных
- •Пример логистической регрессии и статистики
- •Качество подгонки логистической регрессии
- •Вероятность правильного предсказания
- •Коэффициенты регрессии
- •О статистике Вальда
- •Сохранение переменных
- •7. Исследование структуры данных
- •7.1. Факторный анализ
- •Метод главных компанент
- •Интерпретация факторов.
- •Оценка факторов
- •Статистические гипотезы в факторном анализе
- •Задание факторного анализа
- •7.2. Кластерный анализ
- •Иерархический кластерный анализ
- •Быстрый кластерный анализ
- •7.3. Многомерное шкалирование
- •Многомерное шкалирование
- •Качество подгонки модели
- •Вызов процедуры многомерного шкалирования
- •Исходная матрица расстояний
- •Пример построения шкал
- •Литература
- •Приложение 1. Анкета опроса общественного мнения
- •Приложение 2. Переменные файла обследования общественного мнения
5.3. Тесты для ранговых переменных
В ряде методов по имеющимся числовым значениям исследуемой переменной объектам приписываются ранги. Для вычисления рангов объекты упорядочиваются от минимального значения переменной к максимальному, и порядковые номера объектов считаются рангами. Если для некоторых объектов числовые значения переменной повторяются, то всем этим объектам приписывается единый ранг, равный среднеарифметическому значению их порядковых номеров. Об объектах, ранги которых совпадают, говорят, что они имеют связанные ранги. Наличие связанных рангов в выдаче по ранговым тестам обозначается словом "ties" (связи). Обычно выводится число связей и статистика критерия, скорректированная для связей.
В качестве примера построения рангов возьмем упорядоченную информацию об успеваемости 7 студентов.
Средний балл: 3.0 3.1 4.0 4.2 4.2 4.5 5.0
Ранг: 1 2 3 4.5 4.5 6 7
Первые три объекта имеют ранги 1, 2, 3; следующая пара -ранг 4.5 =(4+5)/2, следующая пара - 6 и 7.
5.3.1. Двухвыборочный тест Манна-Уитни (Mann-Witney)-
Критерий предназначен для сравнения распределений переменных в двух группах на основе сравнения рангов.
NPAR TESTS M-W = V14 BY Tp(1,4).
Задание теста аналогично заданию критерия Колмогорова-Смирнова (вместо ключевого слова K-S используется слово M-W).
Статистикой критерия, является сумма рангов объектов в меньшей группе, хотя существует пара эквивалентных формул, обозначаемых U и W. Можно также считать, что критерием является средний ранг в указанной группе. Если он значительно отклоняется от ожидаемой величины (N+1)/2 (или средние ранги в группах существенно различны) - обнаруживается отличие распределений.
Если гипотеза о совпадении распределений не отвергается, то это означает близость средних рангов в группах, не гарантируется совпадение распределений не гарантируется.
Авторам теста удалось показать асимптотическую нормальность статистики в условиях выборки групп из одной совокупности, на основе чего отыскивается наблюдаемая значимость критерия - вероятность случайно отклониться от среднего (ожидаемого) значения ранга больше, чем отклонилось выборочное значение статистики.
В выдаче распечатывается значения статистик U и W, а также двусторонняя значимость критерия.
Пример. Используя ранговый критерий, требуется сравнить по возрасту группу считающих, что острова нужно отдать по юридическим причинам, и группу имеющих иное мнение.
count d2 = v6s1 to v6s8 (2).
if (d2>0) wd2=1.
If (v4=1 or v4=2) wd2 = 2.
npar test m-w=v9 by wd2(1,3).
По величине двусторонней значимости можем сделать вывод, что тест Манна-Уитни в указанных группах не обнаружил существенных различий между распределениями по возрасту (таблицы 5.10-11).
Таблица 5.10. Критерий Манна-Уитни. Суммы рангов.
|
WD2 |
N |
Mean Rank |
Sum of Ranks |
V9 Возраст |
1 |
117 |
116.7 |
13650.5 |
|
2 |
103 |
103.5 |
10659.5 |
|
Total |
220 |
|
|
Таблица 5.11. Критерий Манна-Уитни. Значимость критерия.
|
V9 Возраст |
Mann-Whitney U |
5303.5 |
Wilcoxon W |
10659.5 |
Z |
-1.533 |
Asymp. Sig. (2-tailed) |
0.125 |