Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Статистический пакет SPSS / Ростовцев П. Анализ социологических данных с применением статистического пакета SPSS, учебное пособие.DOC
Скачиваний:
203
Добавлен:
21.01.2014
Размер:
3.94 Mб
Скачать

5.1.2. Тест, основанный на биномиальном распределении

Проверяется гипотеза о параметре биномиального распределения H0: p=p0. Например, проверим по нашей выборке, действительно ли в генеральной совокупности вероятность встретить мужчину p=0.5, , а молодежь не старше 30 лет - с вероятностью p=0.3 (см. предыдущий пример):

NPAR TESTS BINOMIAL(0.5) = V8(1,2).

NPAR TESTS BINOMIAL(0.3) = V9(30).

В скобках за ключевым словом BINOMIAL указывается вероятность "успеха". Далее следует тестируемая переменная. Если за ней в скобках следует два значения, то считается, что выборка ограничена двумя группами, соответствующими этим значениям, а успех соответствует первому значению. Если в скобках задано одно значение, то успех - принятие переменной значения, не большего этого числа. В диалоговом окне есть возможность задать как "точку разрыва", так и два кода.

Программа подсчитывает число объектов m, имеющих заданные значения (в первом случае m - число мужчин (код 1), во втором случае m - число респондентов не старше 30 лет). На основании свойств биномиального распределения подсчитывается двусторонняя наблюдаемая значимость - вероятность случайной величины в условиях биномиального распределения с параметром P отклониться от ожидаемого значения np больше, чем отклонилось выборочное значение m.

Наблюдаемый уровень значимости можно оценить с использованием теоремы Муавра-Лапласа, методом Монте-Карло, а также точно, по биномиальному распределению, используя возможность, представленную в SPSS в EXACT STATISTICS:

NPAR TEST /BINOMIAL (.50)= v8 /METHOD=EXACT TIMER(5).

Таблица 5.4. Значимость критерия хи-квадрат

Category

N

Observed Prop.

Test Prop.

Asymp. Sig. (2-tailed)

Exact Sig. (2-tailed)

Group 1

1 муж.

362

0.508

0.5

0.708

0.708

Group 2

2 жен.

351

0.492

Total

713

1

В таблице 5.4 выдается расчетная 0.508 и заданная теоретическая вероятность Test Prop.=0.5. Выборочное распределение почти совпало с заданным. Этот результат окончательно подтверждает величина двусторонней значимости: 0.708 - вероятность случайно получить значение, большее полученного. Так как 70% - это большая вероятность, мы делаем вывод, что распределение совпадает с заданным. Двусторонний тест показал незначимое отличие доли мужчин в выборке от ожидаемой доли (нулевая гипотеза не отвергается).

5.1.3. Тест Колмогорова-Смирнова

Одно-выборочный тест предназначен для проверки гипотезы о распределении в генеральной совокупности. Статистика критерия - абсолютная величина разности эмпирической и теоретической функций распределения:

Команда задания теста Колмогорова-Смирнова имеет вид:

NPAR TESTS K-S(NORMAL,5,2)=X.

В скобках за ключевым словом K-S указывается предполагаемый вид распределения: NORMAL - нормальное; UNIFORM - равномерное; POISSON - распределение Пуассона; EXPONENTIAL - показательное распределение. За видом распределения в скобках можно указать его параметры: для нормального - среднее и среднеквадратичное отклонение; для равномерного - минимум и максимум; для распределения Пуассона - среднее. По умолчанию используются оценки параметров по выборочной совокупности.

Заметим, что оценка параметров по выборке дает смещение этого критерия. Поэтому ему стоит доверять только для больших выборок.

Таблица 5.5. Проверка нормальности распределения доходов с использованием критерия Колмогорова-Смирнова.

V14 Душевой доход в семье

N

673

Normal Parameters

Mean

229.11

Std. Deviation

151.34

Most Extreme Differences

Absolute

0.187

Positive

0.187

Negative

-0.149

Kolmogorov-Smirnov Z

4.85

Asymp. Sig. (2-tailed)

0

В таблице результатов выдается двусторонняя значимость - вероятность случайно в условиях гипотезы превзойти выборочное значение статистики, фиксирующей отличие распределения от заданного.

Например, проверим нормальности распределения доходов командой:

NPAR TESTS K-S(NORMAL) = V14.

Поскольку двусторонняя значимость в таблице 5.5 (2-tailed P) равна нулю, то можем сделать вывод, что полученная разность фиксирует существенное отличие распределения по доходам от нормального. Во многих исследованиях используется вместо дохода используется его логарифм, распределение которого считается близким к нормальному. Проверим нормальность логарифма доходов:

compute lnv14=ln(v14).

npar test k-s(normal)=w14.

Таблица 5.6. Проверка лог-нормальности распределения доходов

LNV14

N

673

Normal Parameters

Mean

5.2812

Std. Deviation

0.5344

Most Extreme Differences

Absolute

0.098

Positive

0.098

Negative

-0.055

Kolmogorov-Smirnov Z

2.54

Asymp. Sig. (2-tailed)

0

Значение критерия несколько уменьшилось, но существенность различия сохранилось (таблица 5.6).

Иногда бывает необходимо проверить законы распределения не предусмотренные в NPAR TESTS. В этом случае вспомните, что распределение непрерывной случайной величины =F(), где F - функция распределения , равномерно на отрезке (0,1). Таким образом, воспользовавшись статистическими функциями преобразования данных SPSS, из тестируемой переменной можно всегда получить переменную, имеющую теоретически равномерное распределение и проверив, действительно ли ее распределение равномерно, принять или отвергнуть гипотезу о виде распределения F(x).