
- •Предисловие
- •Глава 1. Информация, обрабатываемая статистическим пакетом
- •1.1. Анкетные данные
- •Пример 1.1.
- •1.2. Типы переменных
- •Типы кодирования переменных.
- •Тип шкалы измерения переменных.
- •Неколичественные шкалы
- •Количественные шкалы:
- •Неальтернативные признаки
- •1.3. Имена переменных и метки, коды неопределенных значений
- •Глава 2. Статистический пакет для социологических исследований. Общее описпние и поодготовка данных
- •2.1. Структура пакета
- •2.2. Схема организации данных, окна spss
- •2.3. Управление работой пакета
- •Основные команды меню spss:
- •Статусная строка
- •Ввод данных с экрана
- •2.4. Режим диалога и командный режим
- •Командный режим работы с пакетом Основные правила написания команд на языке пакета
- •Порядок выполнения команд
- •Команды Вызова Get и сохранения данных save.
- •Основные Команды описания данных
- •Основные команды преобразования данных
- •Команды compute и if
- •Основные функции и операторы команд compute и if:
- •Работа с неопределенными значениями
- •Функции для неопределенных значений
- •Работа с пользовательскими неопределенными значениями
- •Работа с функциями Missing и Sysmis.
- •Команда recode
- •Команда count
- •Условное выполнение команд.
- •Команда rank
- •Variable labels rangv14 "ранг по доходам"/
- •V14_5 "квинтильные группы по доходам"/
- •Отбор подмножеств наблюдений
- •Команда split file
- •Взвешивание выборки weight
- •Пример 2.1
- •Variable labels oppos 'Степень противостояния ссср и Японии'
- •Value labels oppos 1 'Взаимное' 2 'Одна из сторон' 3 'Нет противостояния'.
- •2.5. Операции с файлами Агрегирование данных (команда aggregate)
- •Функции агрегирования
- •Объединение файлов (merge files)
- •Глава 4. Сравнение средних, корреляции
- •4.3. Compare Means - простые параметрические методы сравнения средних.
- •Одновыборочный тест (One sample t-test).
- •Variable labels lnv14m "логарифм промедианного дохода".
- •Двухвыборочный t-тест (independent sample t-test)
- •Двухвыборочный t-тест для связанных выборок (Paired sample t-test)
- •Команда means - сравнение характеристик числовой переменной по группам.
- •Одномерный дисперсионный анализ (oneway)
- •Множественные сравнения
- •Var lab w10 "образование".
- •Value lab w10 1 "Высшее" 2 "н/высш" 3 "ср. Спец" 4 "среднее" 5 "ниже среднего".
- •4.4. Корреляции (correlations)
- •Парные корреляции
- •Частные корреляции.
- •Глава 5. Непараметрические тесты. Команда Nonparametric tests.
- •5.1. Одновыборочные тесты
- •5.1.1. Тест Хи-квадрат
- •5.1.2. Тест, основанный на биномиальном распределении
- •5.1.3. Тест Колмогорова-Смирнова
- •5.2. Тесты сравнения нескольких выборок
- •5.2.1. Двухвыборочный тест Колмогорова-Смирнова
- •Var lab w4 "отношение к передаче островов".
- •Val lab 1 "Отдать" 2 "нет".
- •5.2.2. Тест медиан
- •5.3. Тесты для ранговых переменных
- •5.3.1. Двухвыборочный тест Манна-Уитни (Mann-Witney)-
- •5.3.2. Одномерный дисперсионный анализ Краскэла-Уоллиса (Kruskal-Wallis)
- •5.4. Тесты для связанных выборок (related samples)
- •5.4.1. Двухвыборочный критерий знаков (Sign)
- •5.4.2. Двухвыборочный знаково-ранговый критерий Вилкоксона (Wilcoxon)
- •5.4.3. Критерий Фридмана (Friedman)
- •Глава 1. Информация, обрабатываемая статистическим пакетом 120
- •Глава 2. Статистический пакет для социологических исследований. Общее описпние и поодготовка данных 124
- •Глава 4. Сравнение средних, корреляции 144
- •Глава 5. Непараметрические тесты. Команда Nonparametric tests. 154
- •6. Регрессионный анализ
- •6.1. Классическая линейная модель регрессионного анализа
- •Существует ли линейная регрессионная зависимость?
- •Коэффициенты детерминации и множественной корреляции
- •Оценка влияния независимой переменной
- •Стандартизация переменных. Бета коэффициенты
- •Надежность и значимость коэффициента регрессии
- •Значимость включения переменной в регрессию
- •Пошаговая процедура построения модели
- •Переменные, порождаемые регрессионным уравнением
- •Взвешенная регрессия
- •Команда построения линейной модели регрессии
- •Пример построения модели
- •Можно ли в регрессии использовать неколичественные переменные?
- •Взаимодействие переменных
- •6.2. Логистическая регрессия
- •Отношение шансов и логит
- •Решение уравнения с использованием логита.
- •Неколичественные данные
- •Взаимодействие переменных
- •Пример логистической регрессии и статистики
- •Качество подгонки логистической регрессии
- •Вероятность правильного предсказания
- •Коэффициенты регрессии
- •О статистике Вальда
- •Сохранение переменных
- •7. Исследование структуры данных
- •7.1. Факторный анализ
- •Метод главных компанент
- •Интерпретация факторов.
- •Оценка факторов
- •Статистические гипотезы в факторном анализе
- •Задание факторного анализа
- •7.2. Кластерный анализ
- •Иерархический кластерный анализ
- •Быстрый кластерный анализ
- •7.3. Многомерное шкалирование
- •Многомерное шкалирование
- •Качество подгонки модели
- •Вызов процедуры многомерного шкалирования
- •Исходная матрица расстояний
- •Пример построения шкал
- •Литература
- •Приложение 1. Анкета опроса общественного мнения
- •Приложение 2. Переменные файла обследования общественного мнения
Двухвыборочный t-тест (independent sample t-test)
Вариант команды для выполнения процедуры T-TESTдля сравнения средних в двух выборках имеет следующий вид:
T-TEST/GROUPS V4(1,3)/VARIABLES = V9 lnV14m.
Подкоманда GROUPSуказывает переменную группирования; в скобках задаются два значения этой переменной, определяющие группы. Например, приведенная команда будет выполняться только для групп объектов, у которых V4 принимает указанные значения 1 и 3.VARIABLESзадает сравниваемые (зависимые) переменные для выделенных групп объектов. Объекты можно также разбить на две группы, указав в параметре GROUPS одно значение:
T-TEST /GRO v9(30)/VAR V9 lnV14m.
В этом случае вся совокупность будет разделена на те объекты, на которых указанная переменная не больше заданного значения (v930), и те, у которых она больше (v9>30).
Процедурой T-TESTпроверяется гипотеза равенства средних, при этом предполагается нормальность распределения генеральной совокупности. Процедура подсчитывает средние для пары групп, стандартные ошибки, статистики и их значимость. При сравнении двух выборок нас интересует, насколько случайный характер носит различие средних - отличаются ли они значимо?
В зависимости от предположения о равенстве дисперсий испльзуются разные варианты t-статистик.
Если не предполагается равенство
дисперсий в группах, то для сравнения
средних принято использовать статистику
,
которая в условиях гипотезы равенства
матожиданий и нормальностиXимеет
распределение Стьюдента, число степеней
которого оценивается на основе оценок
дисперсий.
Если заранее известно о равенстве
дисперсий в группах, то предпочтительнее
статистика
.
При определении ее величины предварительно вычисляется объединенная дисперсия
.
Из теории известно, что при условии равенства дисперсий вычисляемая величина Spесть несмещенная оценка дисперсии, и статистикаtтакже имеет распределение Стьюдента.
Для проверки равенства дисперсий используется статистики Ливиня, имеющая распределение Фишера.
Двусторонней наблюдаемой значимостью, вычисляемой процедурой T-TEST, является вероятность случайно получить различия средних, такие, что│t-теоретическое│>│t-выборочного│. Если значимость близка к 0, делаем вывод о неслучайном характере различий.
Результат выдается в двух таблицах. В первой размещены средние и характеристики разброса в группах, во второй - результаты их сравнения.
Таблица 4.3. T-тест, описательные статистики по группам
|
V9 Возраст |
N |
Mean |
Std. Deviation |
Std. Error Mean |
LNV14M |
>= 30 |
521 |
0.019 |
0.517 |
0.023 |
|
< 30 |
133 |
-0.177 |
0.593 |
0.051 |
Таблица 4.4. T-тест, сравнение средних и дисперсий в группах
|
Levene's Test for Equality of Variances |
T |
Df |
Sig. (2-tailed) |
Mean Difference |
Std. Error Difference |
95% Confidence Interval of the Difference | ||
F |
Sig. | ||||||||
Lower |
Upper | ||||||||
Equal variances assumed |
2.47 |
0.1162 |
3.78 |
652 |
0.000 |
0.196 |
0.052 |
0.094 |
0.298 |
Equal variances not assumed |
|
|
3.48 |
186.42 |
0.001 |
0.196 |
0.056 |
0.085 |
0.307 |
В таблицах 4.3 и 4.4 приведен пример сравнения средних логарифмов душевых доходов в группах населения до 30 лет и старше 30. Статистика Ливиня в этом случае свидетельствует, что гипотеза равенства дисперсий не отвергается (sig=0.1162). Поэтому, для сравнения средних можно воспользоваться строкой" Equal variances assumed" - "Предполагаются равные дисперсии". Соответствующая статистика показывает, что средние различиются существенно (sig=0.000). Впрочем, даже если мы не удовлетворены статистикой Ливиня, в данном случае и без предположения равенства дисперсий мы можем утверждать то же самое (sig=0.001). Кроме того, это подтверждает и доверительный интервал, не включающий нуля.