- •4. Особенности передачи сигналов цифрового телевидения по эфирным каналам связи
- •4.1. Основные требования к системам передачи сигналов цифрового телевидения по радиоканалам
- •4.2. Перемежение и скремблирование
- •4.3. Принципы кодирования, исправляющего ошибки
- •4.3.1. Коды, исправляющие ошибки
- •4.3.2. Коды Рида-Соломона
- •4.3.3. Сверточное кодирование
- •4.3.4. Алгоритм декодирования Витерби
- •4.3.5. Каскадное кодирование
- •4.3.6. Основные принципы турбокодирования
- •4.4. Способы модуляции, применяемые при передаче сигналов цифрового телевидения по радиоканалу Общие требования к способам модуляции
- •Способ частотного уплотнения с ортогональными несущими (ofdm)
- •Квадратурная амплитудная модуляция (qam)
- •Квадратурная фазовая манипуляция (qpsk)
- •Закон фазовой манипуляции метода qpsk
- •4.5. Стандарт цифрового наземного телевидения dvb-t Концепция стандарта dvb-t
- •Защитный интервал
- •Оценка параметров
- •Принцип иерархической передачи
- •Обработка данных и сигналов в системе dvb-t.Рандомизация
- •Внешнее кодирование и перемежение
- •Внутреннее кодирование
- •Внутреннее перемежение и формирование модуляционных символов
- •Демультиплексирование
- •Перемежение бит
- •Цифровой символ данных и символ ofdm
- •Перемежение цифровых символов данных
- •Формирование модуляционных символов
- •Перемежение и формирование модуляционных символов при иерархической передаче
- •Модуляция ofdm и преобразование Фурье
- •Спектр радиосигнала ofdm
- •М Рис. 4.30.Спектр мощности радиосигнала ofdm (защитный интервалTu4,fc– центральная частота) ноголучевой прием
- •Формирование данных и структура сигналов
- •Параметры системы dvb-т
- •Основные параметры системы dvb-т
- •Скорости передачи данных системой dvb-т
- •4.6. Основные положения нового стандарта цифрового наземного телевидения dvb-t2
- •Сравнительный анализ основных параметров систем dvb-t,dvb-t2
- •4.7. Стандарт цифрового телевещания для мобильных терминалов dvb-h
- •Контрольные вопросы
Формирование данных и структура сигналов
Сигнал, получаемый в способе модуляции с частотным уплотнением, состоит из многих модулированных несущих, поэтому каждый символ OFDM может рассматриваться как разделенный на элементарные пакеты, каждый из которых переносится одной несущей во время одного символа. Количество бит, переносимое одной несущей за время символа OFDM, зависит от способа модуляции несущих – это 2 бита для квадратурной фазовой манипуляции, 4 бита для квадратурной амплитудной модуляции QAM-16 и 6 бит для модуляции QAM-64.
Передаваемый сигнал организуется в виде кадров(рис. 4.33).Каждый кадр состоит из 68 символов OFDM, нумеруемых от 0 до 67.Четыре последовательных кадра образуют суперкадр. При выбранной структуре кадра в одном суперкадре всегда содержится целое число пакетов длиной 204 байта (рандомизированных транспортных пакетов MPEG-2, снабженных для защиты от ошибок проверочными байтами кода Рида-Соломона).
Каждый символ длительностью TS образуется путем модуляции 1705 несущих в режиме2k и 6817 несущих в режиме 8k. ИнтервалTSсостоит из двух компонентов: интервалаTU, во время которого передаются входные данные передатчика, то есть полезная информация (интервалTUи называетсяполезным), и защитного интервалаTG. Защитный интервал представляет собой копию, или циклическое повторение части полезного интервала, которая вставляется перед полезным (рис. 4.34).

Рис. 4.33.Структура кадра DVB-Т

Рис. 4.34.Структура сигнала OFDM на интервале передачи одного символа OFDM
В дополнение к данным в кадре OFDM передаются опорные сигналы, структура которых известна приемнику, а также сведения о параметрах передачи.
Опорные сигналы, называемые пилот-сигналами, получаются в результате модуляции несущих псевдослучайной последовательностью. Пилот-сигналы используются прежде всего для синхронизации. Они распределены во времени и в частотном спектре сигнала ОFDM, их амплитуды и фазы известны в точке приема, поэтому их можно использовать также для получения сведений о характеристиках канала передачи. В системе используются два типа пилот-сигналов: непрерывные и распределенные. Непрерывные пилот-сигналы передаются на одних и тех же несущих в каждом символе ОFDМ, распределенные – рассеяны равномерно во времени и в частотном диапазоне. Непрерывные пилот-сигналы могут использоваться для синхронизации и оценки фазовых шумов канала, распределенные – для оценки характеристик канала посредством временнóй и частотной интерполяции. Использование временнóй интерполяции в промежутках между распределенными пилот-сигналами при достаточной мощности принимаемого сигнала может помочь для улучшения приема на движущихся объектах, например, на поездах и автомобилях.
Сигналы параметров передачи используются для сообщения приемнику параметров системы, относящихся к канальному кодированию и модуляции: способ передачи – иерархический или неиерархический, параметры модуляции, величина защитного интервала, скорость внутреннего кода, режим передачи – 2k или 8k, номер кадра в суперкадре. Эти сведения могут использоваться приемником для быстрой настройки. Сигналы параметров передаются на 68 последовательных символах ОFDM, обозначаемых как кадр OFDM. Каждый символ OFDM переносит один бит, относящийся к сигналам параметров передачи. Блок данных, соответствующий одному кадру OFDM, содержит 68 бит, назначение которых устанавливается следующим образом:
1 бит – инициализация;
16 бит – синхронизация;
37 бит – сигнальная информация;
14 бит – проверочные биты для обнаружения и исправления ошибок, возникающих в канале связи.
Из 37 информационных бит сейчас используется 23, остальные 14 представляют собой резерв на будущее. Проверочные биты вычисляются в соответствии с правилами статистического кодирования Боуза-Чоудхури-Хоквингема. Помехозащищенности данных, переносимых сигналами параметров передачи, способствует и способ модуляции. Каждая несущая, переносящая сигналы параметров передачи, модулируется по способу дифференциальной двоичной фазовой манипуляции (DBSK – Differential Binary Phase Shift Keying), в соответствии с которой фаза несущей меняется на противоположную от символа к символу, если передаваемые данные равны единице, и не меняется, если передаваемые данные равны нулю.
Естественным является вопрос, почему используется лишь 1705 и 6817 несущих, хотя преобразователь Фурье в качестве модулятора OFDM допускает 2048 и 8192 несущих? Число несущих, переносящих данные, пилот-сигналы и сигналы параметров передачи, установлено по следующим требованиям:
общая структура кадра для режимов 2k и 8k;
достаточная величина защитного частотного интервала между двумя соседними блоками несущих;
максимальная пропускная способность канала;
достаточное количество пилот-сигналов для получения информации о канале передачи;
одинаковое число несущих, переносящих полезные данные, в каждом символе OFDM;
целое число MPEG-2 транспортных пакетов, переносимых в пределах одного суперкадра, независимо от режима передачи.
