Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

гиста ответы

.pdf
Скачиваний:
401
Добавлен:
15.03.2016
Размер:
3.56 Mб
Скачать

3.Пигментная ткань - скопление большого количества меланоцитов. Имеется в определенных участках кожи (вокруг сосков молочных желез), в сетчатке и радужке глаза, и т.д. Функция: защита от избытка света, УФЛ.

4.Слизисто-студенистая ткань - имеется только у эмбриона (под кожей, в пупочном канатике). В этой ткани очень мало клеток (мукоциты), преобладает межклеточное вещество, а в нем - преобладает студенистое основное вещество, богатое гиалуроновой кислотой. Такая особенность строения обуславливает высокий тургор данной ткани.

Функция: механическая защита нижележащих тканей, препятствует пережатию кровеносных сосудов пуповины.

3.Спинной мозг. Источники развития, строение. Рефлекторная дуга собственного аппарата. Понятие о лавинообразном нарастании импульса.

Снаружи покрыт мягкой мозговой оболочкой, которая содержит кровеносные сосуды, внедряющиеся в вещество мозга.

Условно выделяют 2 половины, которые разделены передней срединной щелью и задней срединной соединительнотканной перегородкой. В центре находится центральный канал спинного мозга, который находится в сером веществе, выстлан эпендимой, содержит спинномозговую жидкость, находящуюся в постоянном движении.

По периферии располагается белое вещество, где находятся пучки нервных миелиновых волокон, которые образуют проводящие пути. Они разделены глиально-соединительнотканными перегородками. В белом веществе различают передний, боковой и задний канатики.

В средней части находится серое вещество, в котором выделяют задние, боковые (в грудных и поясничных сегментах) и передние рога. Половины серого вещества соединяются передней и задней спайкой серого вещества. В сером веществе имеются в большом количестве глиальные и нервные клетки.

Нейроны серого вещества делятся на:

1)Внутренние. Полностью (с отростками) располагаются в пределах серого вещества. Являются вставочными и находятся в основном в задних и боковых рогах.

Бывают:

а) Ассоциативные. Располагаются в пределах одной половины.

б) Комиссуральные. Их отростки уходят в другую половину серого вещества.

2)Пучковые нейроны. Располагаются в задних рогах и в боковых рогах. Образуют ядра или располагаются диффузно. Их аксоны заходят в белое вещество и образуют пучки нервных волокон восходящего направления. Являются вставочными.

3)Корешковые нейроны. Находятся в латеральных ядрах (ядрах боковых рогов), в передних рогах. Их аксоны выходят за пределы спинного мозга и образуют передние корешки спинного мозга.

В поверхностной части задних рогов располагается губчатый слой, где содержится большой число мелких вставочных нейронов. Глубже данной полоски находится желатинозное вещество, содержащее в основном глиальные клетки, мелкие нейроны (последние в

малом количестве).

Всредней части находится собственное ядро задних рогов. Оно содержит крупные пучковые нейроны. Их аксоны идут в белое вещество противоположной половины и образуют tr. spinocerebellaris anterior и tr. spinothalamicus posterior. Клетки ядра обеспечивают

экстероцептивную чувствительность.

У основания задних рогов располагается грудное ядро (столб Кларка-Штилинга), которое содержит крупные пучковые нейроны. Их аксоны идут в белое вещество этой же половины и участвуют в образовании tr. spinocerebellaris posterior и tr. spinothalamicus posterior. Клетки данного ядра обеспечивают проприоцептивную чувствительность.

Впромежуточной зоне находятся латеральное и медиальное ядра. Медиальное промежуточное ядро содержит крупные пучковые нейроны. Их аксоны идут в белое вещество этой же половины и образуют tr. spinocerebellaris anterior. Обеспечивает висцеральну ю чувствительность.

Латеральное промежуточное ядро относится к вегетативной нервной системе. В грудном и верхнепоясничном отделах является симпатическим ядром, а в сакральном – ядром парасимпатической нервной системы. В нем содержится вставочный нейрон, который является первым нейроном эфферентного звена рефлекторной дуги. Это корешковый нейрон. Его аксоны выходят в составе передних корешков спинного мозга.

Впередних рогах находятся крупные двигательные ядра, которые содержат двигательные корешковые нейроны, имеющие короткие дендриты и длинный аксон. Аксон выходит в составе передних корешков спинного мозга, а в дальнейшем идут в составе периферического смешанного нерва, представляет двигательные нервные волокна и закачивается на периферии нервно-мышечным синапсом на скелетных мышечных волокнах. Являются эффекторными. Образует третье эффекторное звено соматической рефлекторной дуги.

Впередних рогах выделяют медиальную группу ядер. Она развита в грудном отделе и обеспечивает иннервацию мышц туловища. Латеральная группа ядер находится в шейном и поясничном отделах и иннервирует верхние и нижние конечности.

Всером веществе спинного мозга находится большое количество диффузных пучковых нейронов (в задних рогах). Их аксоны идут в белое вещество и сразу же делятся на две ветви, которые отходят вверх и вниз. Ветви через 2-3 сегмента спинного мозга обратно возвращаются в серое вещество и образуют синапсы на двигательных нейронах передних рогов. Данные клетки образуют собственный

аппарат спинного мозга, который обеспечивает связь между соседними 4-5 сегментами спинного мозга, за счет чего обеспечивается ответная реакция группы мышц (эволюционно выработанная защитная реакция).

Белое вещество содержит в основном миелиновые нервные волокна. Они идут пучками и образуют проводящие пути спинного мозга. Они обеспечивают связь спинного мозга с отделами головного мозга. Пучки разделяются глиальными перегородками. При этом различают восходящие пути, которые несут афферентную информацию от спинного мозга к головному. Эти пути располагаются в задних канатиках белого вещества и периферических отделах боковых канатиков. Нисходящие проводящие пути это эффекторные пути, они несут информацию от головного мозга к периферии. Располагаются в передних канатиках белого вещества и во внутренней части боковых канатиков.

«воротная» теория Р. Мелзака. Известно, что задние рога спинного мозга содержат желатинозную субстанцию Роландо. Центральные отростки рецепторных нейронов поверхностной и глубокой чувствительности отдают коллатерали к клеткам желатинозной субстанции (вставочным нейронам), аксоны которых образуют собственные пучки спинного мозга (задние, боковые, передние). При раздражении даже единичных рецепторов происходит вовлечение десятков и сотен ассоциативных нейронов, т. е. возникает лавинообразное нарастание нервных импульсов в сегментарном аппарате спинного мозга. Раздражение даже ограниченного числа, скажем, интероцепторов способно вызвать в зоне ассоциативных нейронов заднего рога лавинообразное нарастание нервных импульсов, вызывающих возбуждение нейронов иной модальности, «ответственных», в частности, за восприятие поверхностных (болевых) импульсов.

При расхождении, или дивергенции, путей каждый афферентный нейрон посредством множества концевых разветвлений аксонов контактирует с большим числом эфферентных нейронов непосредственно или через промежуточный нейрон. Это создаѐт предпосылки для активирования одним афферентным нейроном множества близких к нему и отдалѐнных эфферентных нейронов и связанных с ними рефлексов в определѐнной последовательности

Установлено, что на теле и дендритах каждого нейрона ретикулярной формации и коры головного мозга существуют синаптические контакты множества др. нейронов, активируемых раздражителями разных модальностей и оказывающих как возбуждающее, так и тормозящее влияние на «общий путь».

Билет 29

1. Типы плацент у млекопитающих. Строение и функции плаценты человека.

При формировании плаценты участвуют со стороны плода трофобласт и внезародышевая мезенхима. А со стороны матери - функциональный слой слизистой матки. Трофобласт и внезародышевая мезенхима образуют хорион. Это происходит следующим образом: вначале трофобласт представляет собой полый пузырек из одного слоя клеток, в последующем клетки трофобласта начинают усиленно размножаться и поэтому трофобласт становится многослойным. Причем клетки наружных слоев сливаются друг с другом и образуют симпласт - этот слой называется симпластическим трофобластом; самый внутренний слой трофобласта сохраняет клеточное строение и называется клеточным трофобластом (цитотрофобласт). Параллельно с этим из эмбриобласта выселяются клетки - внезародышевая мезенхима и она покрывает внутреннюю поверхность цитотрофобласта. Эти 3 слоя вместе (симпластический и клеточный трофобласт, внезародышевая мезенхима) назваются хорионом или сосудистой оболочкой.

В дальнейшем симпластический трофобласт по всему периметру хориона образует выросты - I ворсинки хориона; I ворсинки хориона начинают выделят протеолитические ферменты, которые разрушают эпителий матки и через образовавшуюся брешь зародыш внедряется в толщу слизистой матки, т.е. происходит имплантация; эпителий матки за зародышем восстанавливается и поэтому зародыш оказывается замурованным в толще слизистой матки.

Все 3 слоя хориона вместе образуют II ворсинки хориона, которые проникают через стенки кровеносных сосудов слизистой матки и плавают в крови матери, т.е. начинается плацентация. В дальнейшем во II ворсинки хориона врастают сосуды плода и II ворсинки превращаются в III ворсинки. Кровь в сосудах плода в III ворсинках и кровь матери не смешиваются, между ними находится плацен тарный барьер, который состоит из следующих слоев:

1.Эндотелий капилляров плода в III ворсинках.

2.Базальная мембрана капилляров плода.

3.Внезародышевая мезенхима.

4.Цитотрофобласт.

5.Симпластический трофобласт. Типы плацент у млекопитающих:

1.Эпителиохориальная - ворсинки хориона проникают в просвет маточных желез, эпителий не разрушается (пример: у свиньи).

2.Десмохориальная - ворсинки хориона проникают через эпителий матки и контактируют с рыхлой соед.тканью эндометрия

(пример: у жвачных).

3.Эндотелиохориальная - ворсинки хориона проникают через эпителий матки и прорастают в стенку сосудов матери до эндотелия, но в просвет сосуда не проникают (пример: у хищников).

4.Гемахориальная - ворсинки хориона проходят через эпителий матки, прорастают через стенки сосудов матери и плавают в крови матери, т.е. ворсинки контактируют непосредственно с кровью матери (пр.: человек).

Плацента выполняет следующие функции:

- трофическую; - дыхательную;

- выделительную; - иммунобиологическую – защита плода от антигенов, которые могут быть в крови матери. Но эта защита плохая, поэтому в

организме матери усиленно действуют клетки-супрессоры, подавляющие материнский иммунитет, поэтому беременность проходит на фоне иммунодефицита (со дня оплодотворения);

- барьерную – плацентарный барьер неустойчив для многих соединений и ряда лекарственных веществ, а также для алкоголя; - эндокринную – плацента начинает рано вырабатывать гормоны, поддерживающие процесс эмбрионального развития;

- белоксинтезирующая функция

2.Классификация и характеристика иммуноцитов и их взаимодействие в реакциях гуморального и клеточного иммунитета.

Иммуноциты или иммунокомпетентные клетки - это клетки, обеспечивающие защиту организма от всего генетически чу-жого. К ним относят Т-и В - лимфоциты, макрофаги, тучные клетки, гранулоциты. Макрофаг, фагоцитировавший антиген, как правило, не уничтожает его полностью, а перерабатывает и выделяет на свою поверхность. Одновременно он выделяет интерлейкин-1, которым активизирует лимфоциты и запускает иммунную реакцию. Кроме того, макрофаг секретирует бактерицидные вещества, интерферон; факторы, стимулирующие и подавляющие размножение лимфоцитов, фактор некроза опухолей и др. Информацию Т-хелперам могут также передавать и В-лим-фоциты, и натуральные киллеры.

Эффекторные клетки в клеточном иммунитете - Т-киллеры. Они распознают антиген при помощи своих рецепторов и прикрепляются к нему. У Т-лимфоцитов, кроме рецептора к антигену, имеется рецептор обеспечивающий кооперацию между Т- и В-лимфоцитами. В месте прикрепления к антигену киллер с помощью выделяемых веществ разрывает мембрану антигенносителя и вызывает осмотический лизис. Другой механизм уничтожения - на расстоянии, с помощью токсических веществ.

Эффекторные клетки в гуморальном иммунитете - плазмоциты, которые образуются из В-лимфоцитов под влиянием стимуляции со стороны антигена и Т-хелпера. Об антигене В-лимфо-цит получает информацию от макрофага, а Т-хелпер стимулирует процесс дифференцировки с помощью медиатора интерлейкина-2.

ГУМОРАЛЬНЫЙ ИММУНИТЕТ реализуется путем выработки антител (иммуноглобулинов), которые разрушают и/или выводят антиген из организма

Конечная цель гуморального иммунитета — выработка антител на какой-либо антиген.

Антитела вырабатываются плазматическими клетками, которые образуются из В-лимфоцитов, поэтому гуморальный иммунитет иногда называют В-иммунитетом.

АНТИТЕЛА или ИММУНОГЛОБУЛИНЫ — гликопротеины, синтезируемые плазматическими клетками, способные связывать и инактивировать антигены, которые затем разрушаются протеазами другими ферментами, могут покрывать антиген, что облегчает его последующий фагоцитоз макрофагами или нейтрофилами. Антитела способны связываться с некоторыми клетками, что приводит к изменению функций этих клеток.

КЛЕТОЧНЫЙ ИММУНИТЕТ реализуется путем выработки цитотоксических Т-лимфоцитов (Т-киллеров), которые разрушают и/или выводят антиген из

организма.

Конечная цель клеточного иммунитета — выработка цитотоксических Т-лимфоцитов на какой-то антиген.

Клеточный иммунитет иногда называют Т-иммунитетом, так как эффекторными летками клеточного иммунитета являются цитотоксические Т-лимфоциты.

3.

4.

Гипофиз. Источники развития, строение. Тканевой и клеточный состав адено- и нейрогипофиза. Регуляция их функций.

функции.

Гипофиз закладывается и развивается на 4-ой неделе эмбрионального развития из 2-х источников:

1.Эпителий верхней стенки ротовой бухты.

2.Выпячивание стенки промежуточного пузыря головного мозга.

Эпителий верхней стенки ротовой бухты выпячивается в направлении к основанию головного мозга - гипофизанрый карман Ратке, навстречу которому растет выпячивание стенки промежуточного пузыря головного мозга. Из эпителиального зачатка формируется передняя

и промежуточная доля аденогипофиза, из мозговой ткани образуется задняя доля.

СТРОЕНИЕ

Наиболее просто построена задняя доля гипофиза. Она представлена в основном элементами глии. Глиоциты здесь называются питуицитами. Клетки имеют отросчатую форму, отростки заканчиваются у сосудов: либо в адвентиции, либо соприкасаются с базальной мембраной. Со стороны гипоталамуса из супраоптического и паравентрикулярного ядер от крупных нервных клеток отходят отростки – аксоны, которые по ножке гипофиза проникают в заднюю дольку, где заканчиваются терминалями около сосудов. В самой задней доле гормоны не вырабатываются, они вырабатываются в этих крупных клеточных ядрах гипоталамуса и по аксонам спускаются к терминалям, где накапливаются. Эти накопления видны в виде телец Херринга. Т.о. здесь выделяется антидиуретический гормон (вазопрессин) – вырабатывается в супраоптических ядрах, и окситоцин – вырабатывается в паравентрикулярных ядрах. Задний гипофиз с гипоталамусом связан нейрально (отростками нейроцитов). [Окситоцин вызывает сокращения матки и отдачу молока]

Средняя доля в эмбриогенезе представлена задней стенкой кармана Ратке (мало разрастается). Представляет собой типичный эпителиальный пласт. Клетки окрашены слабобазофильно, между клетками встречаются сосуды, в которые выделяются гормоны, вырабатывающиеся здесь. Иногда между клетками может накапливаться секрет наподобие коллоида и образовываться фолликулы. В средней доле вырабатывается меланоцитотропный и липотропный гормоны. Т.о., средняя доля участвует в регуляции жирового обмена, частично минерального и держит под контролем пигментообразование. У человека средняя доля выражена плохо и клетки могут мигрировать на территорию передней доли.

Наиболее сложно устроена передняя доля гипофиза. Снаружи она окружена тонкой волокнистой капсулой, внутрь отходят тонкие перегородки, которые разделяют всю паренхиму на маленькие дольки, в перегородках располагаются крупные синусоидные капилляры. Паренхима дольки представлена различными по окраске и степени дифференцировки клетками.

Все клетки передней доли гипофиза можно разделить на две части:

1.хромофильные клетки;

2.хромофобные.

Хромофильные клетки подразделяют на:

-базофильные;

-ацидофильные.

Хромофобные клетки называют главными, так как в процентном отношении они занимают 60% от всех клеток. Главные клетки гормонов не производят. Это небольшие по размеру клетки неправильной угловатой формы со светлыми ядрами и плохо окрашенной цитоплазмой. Среди этих клеток выделяют малодифференцированные (возможно, клетки, находящиеся в состоянии покоя после секреции).

Базофильные хромофильные клетки. Они более крупного размера, в цитоплазме содержат базофильно окрашенные гранулы. Среди этих клеток выделяют гонадотропоциты, вырабатывающие одни – ФСГ, другие – ЛГ. Клетки имеют крупный размер, ядро в гонадотропоцитах сдвинуто на периферию (эксцентрично). Крупные гранулы занимают периферическую часть цитоплазмы, хорошо развиты органеллы. При гиперсекреции клетки, перед ядром сильно гипертрофируется комплекс Гольджи. Кроме гонадотропоцитов к базофильным клеткам относятся и тиротропоциты. Они более мелкие, ядра в них расположены в центре. Крупная базофильная зернистость расположена по всему периметру цитоплазмы. Эти клетки занимают 6-10%, то есть их немного. [ЛГ стимулирует овуляцию, обр-е желтого тела и продукцию им прогестерона, стимулирует выработку тестостерона в семеннике. ФСГ в яичнике усиливает рост фолликулов и выработку ими эстрогенов; в яичке стимулирует сперматогенез. ТТГ активирует продукцию и секрецию тиреоидного гормона щ.ж.]

Хромофильные ацидофильные клетки. Количество 30-35%. К ним относят клетки, вырабатывающие гормон роста соматотропоциты,

лактотропоциты. Клетки по размеру крупные, близкие к базофильным. Имеют более округлую форму, в цитоплазме содержатся специфические гранулы, окрашивающиеся ацидофильно. [СТГ стимулирует рост организма в целом и его отдельных частей, напр., костного скелета. ЛТГ стимулирует выработку молока в молочных железах]

Промежуточное положение занимают клетки, вырабатывающие адренокортикотропный гормон. Их можно отличить только в электронный микроскоп. Возрастные изменения в гипофизе. В постнатальном периоде активируются преимущественно ацидофильные клетки (очевидно, в связи с

обеспечением повышенной продукции соматотропина, стимулирующего быстрый рост тела), а среди базофилов преобладают тиротропоциты. В пубертатном периоде, когда наступает половое созревание, увеличивается количество базофильных гонадотропов.

Аденогипофиз обладает ограниченной регенераторной способностью, главным образом за счет специализации хромофобных клеток. Задняя доля гипофиза, образованная нейроглией, регенерирует лучше.

Билет 30

1. Гаструляция у человека, ее особенности.

Сущность стадии гаструляции заключается в том, что однослойный зародыш — бластула — превращается в многослойный — двухили трехслойный, называемый гаструлой Способы перестройки бластулы в.

1.Инвагинация, или впячивание. Часть клеток прогибается в бластоцель, образуя при этом второй - внутренний зародышевый листок, или энтодерму. Данный способ возможен, если бластоцель обширен и зародыш напоминает форму шара.

2.Эпиболия, или обрастание. Мелкие, интенсивно делящиеся клетки обрастают зону более крупных бластомеров, обладающих низкой митотической активностью. В этом случае бластоцель всегда незначителен, сдвинут к анимальному полюсу, бластодерма многослойна.

3.Иммиграция, или вселение. Отдельные клетки или их популяции перемещаются из бластодермы и образуют внутренний зародышевый листок - энтодерму.

4.Деляминация, или расслоение. Клетки бластодермы делятся, образуется внутренний клеточный пласт - энтодерма и

Уживотных с резко полилецитальными и телолецитальными яйцеклетками (птицы) гаструляция начинается с деляминации, то есть расщепления зародышевого диска, распластанного на желтке, на два слоя: поверхностный - эктодерма и внутренний - энтодерма. Дальнейшая интенсивная миграция клеток, расположенных на периферии диска, в направлении заднего конца зародыша завершается формированием первичной полоски. На переднем ее конце образуется головной (первичный) узелок. Последний соответствует дорсальной губе бластопора. Боковыми губами бластопора является первичная полоска. В этой зоне путем инвагинации клеток обособляется хордомезодермальный зачаток, который затем растет в виде клина между эктодермой и энтодермой.

Процесс гаструляции у млекопитающих сходен с гаструляцией птиц.

Таким образом, сравнительный анализ процесса гаструляции свидетельствует о том, что у всех животных он завершается формированием зародышевых листков: эктодермы и энтодермы (первая фаза) и мезодермы (вторая фаза).

Бластомеры, мигрировавшие через дорсальную губу бластопора, - это материал будущей хорды. Последняя индуцирует развитие соседних эмбриональных зачатков, а развитие эктодермальной закладки обусловливает развитие нервной трубки.

В процессе развития мезодермы у всех позвоночных образуется хорда, сегментированная мезодерма, или сомиты (спинные сегменты), и несегментированная мезодерма, или спланхнотом. Последний состоит из двух листков: наружного - париетального (пристеночного) и внутреннего - висцерального. Пространство между этими листками называется вторичной полостью тела .

Спинные сегменты могут быть связаны с несегментированной мезодермой сегментными ножками, или нефрогонадотомом.

В сомитах различают три зачатка: дерматом, миотом, склеротом. Из них соответственно развиваются глубокие слои кожи, мышечная ткань скелета, костная и хрящевая ткани. Нефрогонадотом - это зачаток мочеполовой системы, а из спланхнотома образуются внутренняя выстилка серозных оболочек, корковое вещество надпочечников, ткани сердца.

Из эктодермы развиваются у всех позвоночных нервная трубка и кожная, а также внезародышевая эктодерма. Процесс дифференцировки нервной пластинки описан выше.

Краниальная часть нервной трубки расширена, из нее развиваются нервные пузыри, а затем головной мозг. Нервная трубка - это зачаток всей нервной системы животного.

Клетки эктодермы, граничащие с нервной пластинкой, характеризуются высокой митотической активностью. Делясь, они покрывают зачаток нервной трубки, в связи с чем последняя оказывается лежащей под эктодермой. Из кожной эктодермы развивается самый поверхностный (эпителиальный) слой кожного покрова и его производные.

Из кишечной энтодермы развивается внутренняя ткань (эпителий) кишечной трубки и ее производные: печень, поджелудочная железа, органы дыхания.

При дифференцировке зародышевых листков образуется эмбриональная ткань - мезенхима. Она развивается из клеток, выселившихся главным образом из мезодермы и эктодермы (рис. 54). Мезенхима - это источник развития соединительной ткани, гладких

мышц, сосудов и других тканей организма животного.

2. Строение красного костного мозга. Характеристика постэмбрионального кроветворения в нем. Понятие о стволовой

клетке.

Красный костный мозг - центральный ОКТ, где идет как миелопоэз, так и лимфоцитопоэз. ККМ в эмбриональном периоде закладывается из мезенхимы на 2-ом месяце, к 4-му месяцу становится центром кроветворения. ККМ - ткань полужидкой консистенции, темно-красного цвета из-за большого содержания эритроцитов. Строму ККМ составляет ретикулярная ткань, обильно пронизанная гемокапиллярами синусоидного типа. В петлях ретикулярной ткани располагаются островками или колониями созревающие клетки крови:

1.Эритроидные клетки в своих островках-колониях сгруппируются вокруг макрофагов, нагруженных железом, полученных от погибших в селезенке старых эритроцитов. Макрофаги в ККМ передают эритроидным клеткам железо, необходимое для синтеза ими гемоглобина.

2.Отдельными островками-колониями вокруг синусоидных гемокапилляров располагаются лимфоциты, гранулоциты, моноциты, мегакариоциты. Островки разных ростков перемежаются друг с другом и создают мозаичную картину.

Эритропоэз у млекопитающих и человека протекает в костном мозге в особых морфофункциональных ассоциациях, получивших название эритробластических островков.

Эритробластический островок состоит из макрофага, окруженного эритроидными клетками. Эритроидные клетки развиваются из колониеобразующей эритроидной клетки (КОЕ-Э), вступившей в контакт с макрофагом костного мозга. КОЕэ и образующиеся из нее клетки — от проэритробласта до ретикулоцита — удерживаются в контакте с макрофагом его рецепторами — сиалоадгезинами.

Макрофаги служат своего рода «кормильцами» для эритробластов, способствуют накоплению в непосредственной близости от

эритробластов и поступлению в них эритропоэтина, витаминов кроветворения (витамина D3), молекул ферритина. Макрофаги островко в фагоцитируют ядра, вытолкнутые эритробластами при их созревании и способны повторно присоединять КОЕэ и формировать вокруг себя новый очаг эритропоэза.

По мере созревания эритробласты отделяются от островков и после удаления ядра (энуклеации) проникают через стенку венозных синусов в кровоток.

Гранулоцитопоэз

Гранулоцитопоэтические клетки также образуют островки, главным образом по периферии костномозговой полости. Незрелые клетки гранулоцитарных рядов окружены протеогликанами. В процессе созревания гранулоциты депонируются в красном костном мозге, где их насчитывается примерно в 3 раза больше, чем эритроцитов, и в 20 раз больше, чем гранулоцитов в периферической крови.

Тромбоцитопоэз

«Гиганты красного костного мозга дают карликов крови» - Мегакариобласты и мегакариоциты располагаются в тесном контакте с синусами так, что периферическая часть их цитоплазмы проникает в просвет сосуда через поры. Отделение фрагментов цитоплазмы в виде тромбоцитов (кровяных пластинок) происходит непосредственно в кровяное русло.

Лимфоцитопоэз и моноцитопоэз

Среди островков клеток миелоидного ряда встречаются небольшие скопления костномозговых лимфоцитов и моноцитов, которые окружают кровеносный сосуд.

В обычных физиологических условиях через стенку синусов костного мозга проникают лишь созревшие форменные элементы крови. Миелоциты и эритробласты попадают в кровь только при патологических состояниях организма. Причины такой избирательной проницаемости стенки сосудов остаются недостаточно ясными, но факт проникновения незрелых клеток в кровяное русло всегда служит верным признаком расстройства костномозгового кроветворения.

3. Глаз. Оболочки глаза, источники их развития. Аккомодационный аппарат глаза, строение и функции.

Источники развития: нервная трубка, мезенхима (с добавлением выселившихся из ганглиозной пластинки клеток нейроэктодермального происхождения), экто-дерма.

Закладка начинается в начале 3-й недели эмбрионального развития в виде глазных ямок в стенке еще незамкнутой нервной трубки, в дальнейшем из зоны этой ямки выпячиваются 2 глазных пузырька из стенки промежуточного мозга. Глазные пузырьки соединены с промежуточным мозгом при помощи глазного стебелька. Передняя стенка пузырьков впячивается и пузырьки превращаются в двухстенные глазные бокалы.

Одновременно с этим эктодерма напротив глазных пузырьков впячиваясь образует хрусталиковые пузырьки.

Эпителиоциты задней полусферы хрусталикового пузырька удлиняются и превращаются в длинные прозрачные структуры - хрусталиковые волокна. В хрусталиковых волокнах синтезируется прозрачный белок - кристаллин. В последующем в хрусталиковых волокнах-

клетках органоиды исчезают, ядра сморщиваются и исчезают. Таким образом образуется хрусталик - своеобразная эластичная линза. Из эктодермы перед хрусталиком образуется передний эпителий роговицы.

Внутренний листок 2-х стенного глазного бокала дифференцируется в сетчатку, принимает участие при формировании стекловидного тела, а наружный листок образует пигментный слой сетчатки. Материал края глазного бокала вместе с мезенхимой уч аствует при формировании радужки.

Из окружающей мезенхимы образуется сосудистая оболочка и склера, цилиарная мышца, собственное вещество и задний эпителий роговицы. Мезенхима также участвует при образовании стекловидного тела, радужки.

В стенке глаза выделяют 3 оболочки.

1.Наружная оболочка — фиброзная. В задней части она представлена склерой (белочной оболочкой), в передней части —

роговицей.

2.Средняя оболочка — сосудистая. В передней части ее производные—ресничное тело (цилиарное) и радужная оболочка.

3.Внутренняя оболочка — сетчатка. В задней стенке располагается зрительная сетчатка, в передней — смешанная часть, которая покрывает изнутри ресничное тело и радужку.

Имеется хрусталик и стекловидное тело, которое занимает основную полость глаза. Выделяют переднюю камеру глаза и заднюю - между радужкой и хрусталиком, полость заполнена водянистой влагой.

Сетчатка, внутренняя чувствительная оболочка глазного яблока, состоит из: наружного пигментного слоя внутреннего светочувствительного нервного.

Функционально выделяют:

1) заднюю (бóльшую) зрительную часть сетчатки (соприкасается со стекловидным телом, фоторецепторные клетки). В заднем полюсе глаза:

слепое пятно - место выхода зрительного нерва, желтое пятно - место наилучшего видения с небольшим углублением — центральной ямкой, есть только фоторецепторные клетки, в

основном - колбочки, а другие слои как бы раздвинуты. 2) цилиарную, покрывающую цилиарное тело

3) радужковую, покрывающую заднюю поверхность радужки.

Ресничное тело. Ресничное тело является производным сосудистой и сетчатой оболочек. Выполняет функцию фиксации хрусталика и изменения его кривизны, тем самым участвуя в акте аккомодации. На меридиональных срезах через глаз цилиарное тело имеет вид треугольника, который своим основанием обращен в переднюю камеру глаза.

От отростков ресничного тела отходят коллагеновые волокна, которые вплетаются в капсулу хрусталика и при рассмотрении предметов на близком расстоянии ресничное тело смещается внутрь, коллагеновые волокна расслабляются и хрусталик становиться выпуклым. Преломляющая способность увеличивается и становиться хорошо видны предметы вблизи. Если мы смотрим вдаль, ресничные мышцы расслабляются, ресничное тело смещается к наружи, ресничная связка натягивается, хрусталик уплощается, уменьшается преломляющая способность и становиться хорошо видны удаленные предметы.

Ресничное тело и ресничные отростки относятся к аккомодационному аппарату, способны изменять кривизну хрусталика.

С возрастом в ресничном теле наступает атрофия мышц, становится больше соединительной ткани, хрусталик частично теряет способность к аккомодации; поэтому в старческом возрасте преобладает дальнозоркость.

Радужка. Представляет собой дисковидное образование с отверстием изменчивой величины (зрачок) в центре. Она является производным сосудистой (в основном) и сетчатой оболочек. Сзади радужка покрыта пигментным эпителием сетчатой оболочки. Расположена между роговицей и хрусталиком на границе между передней и задней камерами глаза. Край радужки, соединяющий ее с цилиарным тел ом, называется цилиарным краем. Строма радужки состоит из рыхлой волокнистой соединительной ткани, богатой пигментными клетками. Здесь располагаются гладкие миоциты, образующие мышцы, суживающие или расширяющие зрачок.

В радужке различают 5 слоев:

1)передний эпителий, покрывающий переднюю поверхность радужки, представлен плоскими полигональными клетками. Он является продолжением эпителия, покрывающего заднюю поверхность роговицы.

2)наружный пограничный (бессосудистый) слой, состоит из основного вещества, в котором располагаются значительное количество фибробластов и пигментных клеток. Различное положение и количество меланинсодержащих клеток обусловливают цвет глаз. У альбин осов пигмент отсутствует и радужка имеет красный цвет в связи с тем, что через ее толщу просвечивают кровеносные сосуды. В пожилом возрасте наблюдается депигментация радужки и она делается более светлой.

3)сосудистый слой, состоит из многочисленных сосудов, пространство между которыми заполнено рыхлой волокнистой соединительной тканью с пигментными клетками.

4)внутренний пограничный слой, строение аналогично наружному пограничному слою.

5)пигментный эпителий, является продолжением двухслойного эпителия сетчатки, покрывающего цилиарное тело и отростки.

Билет 31

1.Развитие зародыша человека с 7 по 20 день.

Зародыш, имеющий вид пузырька, на 6 – 7-й день беременности внедряется (имплантируется) в слизистую оболочку матки (см. рис. 81). На 2-й неделе беременности эмбриобласт разделяется на две пластинки – наружный и внутренний зародышевые листки. Из

наружного зародышевого листка – эктодермы (от греч. ectos – вне, derma – кожа) в дальнейшем развиваются эпителиальный покров кожи и все органы нервной системы (головной и спинной мозг,

нервы). Внутренний зародышевый листок – энтодерма дает начало первичной кишке, из которой развиваются эпителиальный покров трубчатых органов пищеварительной и дыхательной систем, а также железы этих органов, в том числе печень и поджелудочная железа.

Эктодерма и энтодерма, разрастаясь в разные стороны, изгибаются и образуют прилежащие друг к другу пузырьки. Из эктодермы образуется амниотический пузырек, из энтодермы –

желточный пузырек.

На 3-й неделе беременности между соприкасающимися друг с другом частями амниотического и желточного пузырьков образуется

средний зародышевый листок – мезодерма, из которой в дальнейшем формируются кости скелета, мышцы и многие другие органы.

Рис. 82. Положение эмбриона, плода и зародышевых оболочек на разных стадиях развития человека:

А – зародыш в возрасте 2 – 3 недель; Б – зародыш в возрасте 4 недель:1 – полость амниона, 2 – тело эмбриона, 3 – желточный мешок, 4 – трофобласт; б – зародыш в возрасте 6 недель; Г – плод в возрасте 4 – 5 месяцев: 1 – тело эмбриона (плода), 2 – амнион, 3 – желточный мешок, 4 – хорион, 5 – пупочный канатик

На 3 – 4-й неделе беременности тело зародыша изгибается и обособляется от внезародышевых органов (рис. 82). Эктодерма покрывает тело зародыша снаружи, а энтодерма, оказавшаяся внутри зародыша, свертывается в трубочку, образуя зачаток будущей кишки. Амнион (амниотический пузырек), заполненный жидкостью, окружает тело зародыша снаружи, защищает его от различных повреждений, сотрясений. Желточный мешок (пузырек) до конца 2-го месяца беременности функционирует как кроветворный орган; в его стенках также образуются первичные половые клетки – гонобласты. Узкое отверстие, сообщающее эмбриональную (первичную) кишку с желточным мешком, в дальнейшем превращается в пупочное кольцо.

2.Слюнные железы. Принципы классификации, строение, источники развития.

Слюнные железы

Все слюнные железы образуются в эмбриогенезе на 6-8 нед (к 2-м мес). Эти железы сложные альвеолярные или альв.-трубчатые разветвленные, имеют дольчатость. Они имеют: 1-капсула; 2-междольковая соед.ткань, в которой лежат междольковые выводные протоки и кровеносные сосуды. Дольки представлены секреторными отделами и внутридольковыми выводными протоками. Внутридольковый выводной проток складывается из вставочных отделов, которые начинаются от секреторных отделов и из исчерченных протоков.

Секреторные отделы в околоушной железе чисто белковые, т.е. серозные. Секрет жидкий (в основном–Н2О) и содержит большое кол-во ферментов (мальтаза, амилаза). В них выделяется инсулиноподобный фактор, фактор роста эпителия, фактор роста нервов. В слюне могут быть бактерицидные вещества (лизоцим) и фактор некроза.

В первые 2 года железа вырабатывает секрет слизистого характера (более густой), т.к. молоко жидкое и его не надо разбавлять. Постепенно к 6-8 годам происходит перестройка на белковую секрецию. Пик ее активности 20-40 лет, а затем происходит редукция секреторного отдела.

Секреторные отделы располагаются очень плотно по отношению друг к другу. Имеются также миоэпителиальные клетки, создающие многослойность и подчеркивающие эктодермальность происхождения железы.

Вставочные протоки ветвящиеся, выстланы кубическим эпителием и миоэпителиальными клетками. Исчерченность выражена за счет складок цитолеммы и расположенных в складках митохондрий.

Междольковые протоки выстланы многослойным эпителием, в месте выхода многослойным кубическим. Выводной проток открывается в ротовую полость на уровне 2-го верхнего большого коренного зуба.

Поднижнечелюстная сложная разветвленная альвеолярно-трубчатая, смешанная по характеру секрета.

Содержит секреторные отделы белкового и белково-слизистого типа.

Центр часть занимают светлые слизистые клетки, а по периферии – резко базофильные белковые клетки (полулунья Джиануцци). Снаружи их расположены миоэпителиальные клетки. Эти клетки в первый период вырабатывают слизистый секрет.

Вставочные и исчерченные протоки более ветвящиеся. Выводные протоки могут располагаться группой (3-4). Железа, учитывая различный клеточный состав, окрашивается пестро, т.к. слизистые клетки более светлые, белковые – базофильные.

Выводные протоки открываются в области уздечки языка (подле выводным протоком подъязычной железы). Подъязычная железа – смешанного характера (слизисто-белкового). Белковых секреторных отделов очень мало и

они быстро ослизняются.

Смешанные секреторные отделы, где белковые клетки с возрастом подвержены ослизнению; в зрелом возрасте имеются только слизистые секреторные отделы.

Считается, что подъязычная железа является чисто слизистой.

Подчелюстная железа:

1 - белковые концевые отделы; 2 - смешанные концевые отделы; 3 - серозное полулуние; 4 - слизистые клетки смешанного концевого отдела; 5 - вставочный отдел выводного протока; 6 - слюнная трубка; 7 - корзинчатая клетка; 8 - внутридольковая соединительная ткань; 9 - междольковая соединительная ткань; 10 - междольковый выводной проток.

3.Цитоархитектоника и миелоархитектоника коры полушарий большого мозга.

КБПШ подразделяют на лобную, височную, затылочную и теменную долю. Доли делят на области и цитоархитектонические поля. Цитоархитектонические поля - это корковые центры экранного типа. По анатомии Вы подробно изучаете локализации этих полей (центр обоняния, зрения, слуха и т.д.). Эти поля взаимоперекрываются, поэтому при нарушении функций, повреждениях какого либо поля, его функцию частично могут взять на себя соседние поля

Расположение клеток в коре называется цитоархитектоникой. Волокна, образующие миелиновые пути или различные системы ассоциативных, комиссуральных и др., формируют миелоархитектонику коры.

1.В молекулярном слое клетки встречаются в небольшом количестве. Отростки этих клеток: дендриты идут здесь же, а нейриты формируют наружный тангенциальный путь, в состав которого входят и отростки нижележащих клеток.

2.Наружный зернистый слой. Здесь много мелких клеточных элементов пирамидной, звездчатой и др. форм. Дендриты либо ветвятся здесь же, либо проходят в другой слой; нейриты уходят в тангенциальный слой.

3.Пирамидный слой. Достаточно обширный. В основном здесь встречаются малые и средние пирамидные клетки, отростки которых разветвляются и в молекулярном слое, а нейриты больших клеток могут уходить в белое вещество.

4.Внутренний зернистый слой. Хорошо выражен в чувствительной зоне коры (гранулярный тип коры). Представлен множеством мелких нейронов.

Клетки всех четырех слоев являются ассоциативными и передают информацию в другие отделы от нижележащих отделов.

5.Ганглионарный слой. Здесь располагаются в основном большие и гигантские пирамидные клетки. Это в основном эффекторные клетки, т.к. нейриты данных нейронов уходят в белое вещество, являясь первыми звеньями эффекторного пути. Могут отдавать коллатерали, которые могут возвращаться в кору, образуя ассоциативные нервные волокна. Некоторые отростки - коммиссуральные – идут через коммиссуру в соседнее полушарие. Некоторые нейриты переключаются или на ядрах коры, или в продолговатом мозге, в мозжечке, или могут достигать спинного мозга (tr. corticospinalis–моторные ядра). Данные волокна образуют т.н. проекционные пути.

6.Слой полиморфных клеток. Расположен на границе с белым веществом. Здесь имеются крупные нейроны разных форм. Их нейриты могут возвращаться в виде коллатералей в этот же слой, либо в другую извилину, либо в миелиновые пути.

Структурно-функциональной единицей коры БПШ является модуль или колонка. Модуль - это совокупность нейроцитов всех 6-ти слоев, расположенных на одном перпендикулярном пространстве и тесно взаимосвязанных между собой и подкорковыми образованьями. В пространстве модуль можно представить как цилиндр, пронизывающий все 6 слоев коры, ориентированный своей длинной осью перпендикулярно к поверхности корыБелое вещество конечного мозга состоит из ассоциативных (соединяют извилины одного полушария), комиссуральных (соединяют извилины противоположных полушарий) и проекционных (соединяют кору с нижележащими отделами НС) нервных волокон. В колонку входит группа нейронов, способная обработать единицу информации. Сюда входят афферентные волокна из таламуса, и кортико-кортикальные волокна из соседней колонки или из соседней извилины. Отсюда выходят эфферентные волокна. За счет коллатералей в каждом полушарии 3 колонки связаны между собой. Через коммиссуральные волокна каждая колонка связана с двумя колонками соседнего полушария.

Кора БПШ содержит также мощный нейроглиальный аппарат, выполняющий трофическую, защитную, опорно-

механическую функцию. Глия содержит все известные элементы - астроциты, олигодендроглиоциты и мозговые макрофаги

Кору подразделяют на гранулярную и агранулярную (по выраженности зернистых слоев).

Нервные клетки коры головного мозга способны регенерировать при сохранении тела нейрона. При этом восстанавливаются поврежденные отростки и образуются синапсы, за счет этого восстанавливают нервные цепи и рефлекторные дуги.

Для новорожденных характерно весьма высокое ядерно-цитоплазматическое отношение, которое впоследствии снижается за счет увеличения объема цитоплазмы, происходящего параллельно возрастанию площади клеток и числа их синаптических контактов. В первые годы жизни происходит увеличение базофильного вещества в нейронах и миелинизация их аксонов.

С возрастом происходит уменьшение числа нейронов в коре на единицу объема по двум причинам: гибели части клеток и

Соседние файлы в предмете Гистология