
- •2. Производные моносахаридов, образующиеся в организме (фосфорные эфиры, уроновые кислоты, аминосахара), их биологическое значение.
- •3. Биосинтез хс. Схема процесса. Атеросклероз и связь нарушений метаболизма хс и липопротеинов.
- •4.Минеральные вещества крови (Са, р, Na, k, Fe). Участие в обмене.
- •1. Основные этапы биосинтеза белка. Роль нуклеиновых кислот, активация ак, рабочий цикл рибосомы.
- •2. Гетерополисахариды (классы гликозаминокликанов). Строение, распространение в организме. Биологическая роль.
- •3.Структура ферментов. Активный центр. Механизм обр-ия фермент-субстратного комплекса. Аллостерические участки, их биороль.
- •4. Состав молока и роль в питании растущего ор-ма. Сравнительная оценка состава коровьего и женского молока. Преимущества естественного вскармливания.
- •1. Свойства и биолоическая роль белков. Белки как гидрофильные коллоиды. Реакция осаждения белков, использование реакций осаждения в мед.Практике. Методы очистки и разделения белков.
- •2. Переваривание и всасывание у в жкт. Возрастные особенности. Судьба всосавшихся моносахаридов.
- •3. Понятие об энергии активации. Образование фs-комплекса. Принципы количественного определения активности ф. Единицы активности.
- •4.Содержание и формы билирубина в крови. Диагностическое значение форм билирубина.
- •1. Белки как амфотерные электролиты. Механизм образования заряда. Изоэлектрическая точка белка. Св-ва б в ит.
- •2. Биосинтез и мобилизация гликогена, последовательность реакций. Биол.Роль. Регуляция активности фосфорилазы и гликогенсинтетазы.
- •3.Основные сведения о кинетике ферментативных реакций. Факторы влияющие на скорость р-ий.
- •4. Содержание глюкозы в крови. Возрастные особенности.
- •1.Гидролиз белков. Методы, условия, продукты гидролиза. Определение степени гидролиза. Использование гидролизатов в медицине.
- •2. Анаэробный распад глюкозы. Последовательность р-ий, локализация. Биологическая роль.
- •3. Стероидные гормоны, представители. Механизм действия. Особенности биосинтеза стероидных гормонов.
- •4. Содержание белков в плазме крови, возрастные особенности.
- •2. Роль анаэробного и аэробного распада глюкозы в мышцах. Судьба молочной кислоты.
- •3. Кофакторы и их связь с витаминами. Типичные примеры.
- •4. Содержание остаточного азота в крови. Компоненты остаточного азота.
- •1. Белки. Классификация б. Характеристика сложных б. Хромопротеины, классификация, строение, распространение.
- •2. Аэробное окисление у, схема процесса. Образование пвк из глю, последовательность р-ий. Челночный механизм транспорта водорода.
- •3. Регуляция активности ф. Аллостерические механизмы, ограниченный протеолиз, хим.Модифиация ферментов. Биологическая роль регуляции активности ф.
- •4. Возврастные особенности состава крови (белки, остаточный азот, глюкоза).
- •1. Нуклеопротеины. Современные представления о структуре и функциях нуклеиновых кислот. Продукты их гидролиза.
- •2. Окислительное декарбоксилирование пвк. Последовательность реакций, связь с дыхательной цепью.
- •3. Активаторы и ингибиторы ферментов. Типы ингибирования. Применение ингибиторов в качестве лекарственных средств.
- •4. Минеральные вещества крови. Распределение между плазмой и эритроцитами.
- •1. Днк. Первичная, вторичная и третичная структуры. Биологическая роль днк.
- •2. Цикл трикарбоновых кислот, последовательность реакций, связь с дыхательной цепью. Биологическое значение.
- •3. Классификация ферментов. Важнейшие представители основных классов.
- •4. Содержание Са и р в плазме крови.
- •1. Рнк. Первичная и вторичная структура. Типы рнк, особенности строения, локализация в клетке. Биологическая роль.
- •2. Строение коэнзима а, участие в обмене веществ.
- •3. Энергетический обмен. Стадии катаболизма б, л, у. Источники восстановительных эквивалентов для электрон-транспортной цепи. Роль митохондрий в окислении водорода.
- •4. Изменение содержания белков, остаточного азота, глюкозы при заболеваниях.
- •1. Гликопротеины. Их строение, классификация, представители. Биологическая роль.
- •2. Пентозофосфатный путь окисления глюкозы, основные этапы процесса. Биологическое значение цикла. Наследственные нарушения.
- •3. Митохондриальная цепь окисления кислорода. Образование электрохимического трансмембранного потенциала, его использование.
- •4. Анализ желудочного сока.
- •1. Липопротеины. Их строение, классификация. Состав и функции липопротеинов крови.
- •2. Роль печени в обмене углеводов. Глюконеогенез, субстраты для синтеза, схема реакций.
- •3. Тканевое дыхание, последовательность реакций. Продукция энергии в дыхательной цепи.
- •4. Формы кислотности желудочного сока.
- •1. Хромопротеины, их строение, биологическая роль. Основные представители хромопротеинов.
- •2. Поддержание постоянства глюкозы в крови. Источники и пути расходования глюкозы в крови. Гипо- и гипергликемия, причины их возникновения.
- •3. Надн-оксидазная система: надн-зависимые дегидрогеназы, флавиновые дг, железосеоцентры. Строение, их роль в транспорте электронов.
- •4. Возрастные особенности желуд сока.
- •1. Заменимые и незаменимые ак. Потребность ор-ма в б в зависимости от возраста. Белковый минимум. Формы баланса азота в организме. Возрастные особенности.
- •2. Биосинтез глюкозы (глюконеогенез). Возможные предшественники, последовательность реакций. Глюкозолактатный цикл (цикл Кори). Физиологическое значение.
- •3. Цикл кислорода дыхательной цепи. Цитохромоксидаза, строение, биологическая роль.
- •4.Физико-химические показатели мочи. Возрастные особенности.
- •1. Переваривание белков в жкт. Промежуточные и конечные продукты гидролиза белков. Использование амк в тканях.
- •2. Сахарный диабет. Характер нарушений обменных процессов при сах.Диабете. Нарушение уранатного пути использования глюкозы как основа нарушений структуры гликозаминогликанов.
- •3. Образование макроэргических соединений в цепи тканевого дыхания. Характеристика процесса с помощью коэффициента р/о. Разобщение окисления и фосфорилирования в дых.Цепи.
- •4. РН мочи в норме и при патологии.
- •1. Процессы превращения аминокислот в толстом кишечнике под влиянием гнилостных бактерий. Обзвреживание проуктов гниения.
- •2. Наследственные нарушения обмена моносахаридов и дисахаридов: галактоземия, фруктоземия, непереносимость дисахаридов. Гликоген- и агликогенозы
- •3. Окислительное и субстратное фосфорилирование в процессе биологического окисления.
- •4. Пигменты мочи и их происхождение.
- •2. Современные данные об активных формах углеводов, жирных кислот и аминокислот.
- •3. Надн – оксидазная система: убихинон, цитохромы. Строение, их роль в транспорте электронов
- •4.Органические вещества мочи, их происхождение.
- •1. Роль нуклеиновых кислот в биосинтезе белка. Характеристика генетического кода. Строение и роль т-рнк.
- •2.Взаимосвязь белкового, углеводного и липидного обменов. Роль ключевых метаболитов глюкозо-6-фосфатов, пировинограной кислоты и ацетил-КоА.
- •3. Образование со2 в процессах биологического окисления. Типы декарбоксилирования в цтк.
- •4. Азотсодержащие вещества мочи. Возрастные особенности.
- •1.Основные этапы биосинтеза белков (активация амк, фазы трансляции, участие рибосом).
- •2. Липиды, классификация и распространение. Химическая природа, свойства и биол.Роль триацилглицеридов.
- •3. Микросомальное и митохондриальное окисление. Сходства и различия. Пути использования кислорода. Токсичность кислорода. Механизмы защиты.
- •4. Содержание мочевой кислоты в крови. Причины гиперурикемии.
- •1.Современные представления о регуляции биосинтеза белка. Регуляция действия генов. Строение и функционирование лактозного оперона. Индукция и репрессия синтеза белков в организме человека.
- •2.Классификация глицеролипидов, хим строение и биологическая роль в организме
- •3. Витамины и их значение в жизнедеятельности человека. Классификация. Участие в обмене веществ.
- •4. Индикан мочи,значение исследования.
- •1.Процессы образования конечных продуктов обмена простых белков. Основные источники аммиака. Роль глутамина в оезвреживании аммиака и синтезе ряда соединений(как донор амидной группы).
- •2.Депонирование и мобилизация жиров в жировой ткани, физиологическое значение. Транспорт и использование жрных кислот, образующихся при мобилизации жиров. Биосинтез и использование кетоновых тел.
- •3.Витамин рр. Химическая природа. Растпространение, участие в обменных процессах.
- •4.Способы определения белка в моче.
- •1. Распад пуриновых и пиримидиновых азотистых оснований. Конечные продукты. Пути выведения.
- •2. Желчные кислоты, строение. Свойства. Участие в переваривании и всасывании липидов. Конъюгация желчных кислот, биологическая роль.
- •Транспорт
- •3. Гомополисахариды (крахмал и гликоген). Химическое строение, свойства. Особенности распада в желудочно-кишечном тракте и тканях.
- •4. Нервная ткань. Химический состав, особенности обмена. Возрастные особенности.
- •1. Хромопротеины, их строение, биологическая роль. Основные представители хромопротеинов.
- •Хромопротеины
- •2. Аэробное окисление углеводов, схема процесса. Образование пировиноградной кислоты из глюкозы, последовательность реакций. Челночные механизмы транспорта водорода.
- •3. Гормоны половых желез. Химическое строение и участие в обменных процессах.
- •4. Индикан мочи, происхождение, диагностическая роль.
4.Органические вещества мочи, их происхождение.
органические вещества мочи: 1) белок в норме выделяется менее 0,002 г\л (30-50 мг\сут), если содержание больше – протеинурия 2) уробилин образуется при окислении билирубина в желчных путях и тонкой кишке 3)при нарушении синтеза гема в моче появляются промежуточные продукты синтеза порфиринового кольца и продукты распада гемоглобина 4) глюкоза при глюкозурии 5) кетоны 20-50 мг\сут если больше кетонурия развивается 6) гемоглобин при гемоглобинурии 7) мочевина 333-583 ммоль\сут 8) мочевая кислота – конечный продукт пуриновых оснований1,2-1,7 9) а\к при фенилкетонурии , при алкаптонурии, при нарушении синтеза мочевины 9) креатинин попадает в мочу путем клубочковой фильтрации 7,1-17,7
Билет № 18
1. Роль нуклеиновых кислот в биосинтезе белка. Характеристика генетического кода. Строение и роль т-рнк.
В биосинтезе белка участвуют следующие нуклеиновые кислоты:
1. ДНК - в ней закодированна последовательность аминокислотных остатков в белке и она служит матрицей для синтеза иРНК.
2. Информационная РНК передает информацию с ДНК на рибосомы.
3. Рибосомальная РНК - является структурным компонентом рибосом которые представляют собой "машины" собирающие белок из отдельных аминокислот в точном соответствии с кодом иРНК.
4. Транспортная РНК - участвует в узнавании кодона (три нуклеотида на иРНК кодирующие 1 аминокислоту) и транспортирует нужные аминокислоты к месту синтеза белка.
Свойства генет.кода:
1.код триплетен. 2.вырожден(каждая аминокислота шифруется более чем одним кодоном) 3. Код однозначен. Каждый кодон шифрует только одну аминокислоту. 4. Между генами имеются "знаки препинания". 5. внутри нет знаков препинания 6. Код универсален. Генетический код един для всех живущих на Земле существ.
Транспортные РНК. Аминокислоты попадают в рибосому не самостоятельно, а в сопровождении транспортных РНК (т-РНК). Молекулы т-РНК невелики - они состоят всего из 70-80 нуклеотидных звеньев. Их состав и последовательность для некоторых т-РНК уже установлены полностью. При этом выяснилось, что в ряде мест цепочки т-РНК обнаруживаются 4-7 нуклеотидных звеньев, комплементарных друг другу. Наличие комплементарных последовательностей в молекуле приводит к тому, что эти участки при достаточном сближении слипаются друг с другом благодаря образованию водородных связей между комплементарными нуклеотидами. В результате возникает сложная петлистая структура, напоминающая по форме листок клевера. К одному из концов молекулы т-РНК присоединяется аминокислота (Д), а в верхушке "листка клевера" находится триплет нуклеотидов (Е), который соответствует по коду данной аминокислоте. Так как существует не менее 20 различных аминокислот, то, очевидно, имеется не менее 20 различных т-РНК: на каждую аминокислоту - своя т-РНК.
2.Взаимосвязь белкового, углеводного и липидного обменов. Роль ключевых метаболитов глюкозо-6-фосфатов, пировинограной кислоты и ацетил-КоА.
Обмен веществ в ор-ме человека протекает не хаотично, а «тонко настроен». Все превращения органических веществ, процессы анаболизма и катаболизма тесно связаны друг с другом. Не существует самостоятельного обмена Б, У, н.к..Все они объединены в единый процесс метаболизма.
Строительные блоки возникают как промежуточные продукты процессов катаболизма, ведущих к образованию энергии и восстановленных эквивалентов. Следовательно, все эти этапы объединены в единый многофункциональный процесс, направленный на поддержание жизнедеятельности клетки и постоянное обновление ее структур.
Объединение нескольких метаболических путей в единый процесс неизбежно приводит к возникновению общих промежуточных метаболитов.
Глюкозо-6-фосфат образуется из глюкозы и гликогена. Может расходоваться на:
1.синтез глюкозы и гликогена;
2.гликолиз до образования пирувата, у которого также несколько путей использования;
3.поступать на ПФП и превращаться в рибозо-5-фосфат.
Пируват образуется в результате гликолиза, или в ходе превращения липидов, а также из аланина (реакцией переаминирования). Превращается
1.в лактат;
2.в аланин (синтез белка);
3.в оксалоацетат (глюконеогенез);
4.в ацетил КоА (ЦТК).
Ацетил-КоА образуется из пирувата (а, следовательно, аланина, глицерола) и ЖК. Поступает:
1.в ЦТК;
2.используется при бетта-окислении ЖК.
Кетогенные амк, образующие в процессе обмена ацетоацетил-КоА могут непосредственно участвовать в синтезе жк и стеринов. Аналогично могут использоваться глюкогенные амк ч/з ацетил-Ко. Но после предватительного превращения в пировиноградную кислоту, или др.кетокислоту, переходящую в пируват. Фосфолипиды имеют своим источником амк и их производные, например серин, этаноламин, сфингозин, холин.
Получены док-ва синтеза глю из большинства амк. В некоторых случаях(ала, аспарагиновая к-та, глутаминовая) эта связь является непосредственной, в др – она осуществляется через побочные каналы. Слеует отметить, что 3 α-ктокислоты (пируват, оксалоацетат и кетоглутарат), образующиеся соответственно из ала, аспартата и глутамата, не только служат исх.материалом для синтеза глю, но и являются катализатором в превращении ацетильных остатков от всех классов пищевых в-в в ЦТК для образования Е.
Процесс синтеза У из амк – глюконеогенез
Синтез жиров из У – депонировние Е. Глицерин, входящий в состав триглицеридов и фосфолипидов, может легко образоваться из промежуточных метаболитов гликолиза, в чстности из 3-фосфоглицеринового альдегида. Однако, основной путь превращения У в Ж – путь образования высших ж.к. из ацетил-КоА, кот образуется при окислительном декарбоксилировании пировиноградной кислоты.
Ацетил-КоА, образующийся в процессе обмена У, Ж и ряда амк, служит пусковым субстратом как для синтеза ж.к., так и для ЦТК. Две молекулы ацетил-КоА, конденсируясь, образует ацетоуксусную кислоту, которая является источником других ацетоновых тел в ор-ме.
Следует упомянуть об использовании галактозы и глюкозы для биосинтеза цереброзидов и гликолипидов.