- •Предисловие
- •1. Общие вопросы конструирования авиационного радиоэлектронного оборудования
- •1.1 Возникновение проблемы надежности
- •1.2 Основные понятия и определения
- •1.3. Технические требования
- •2. Методы повышения надежности
- •2.1. Условия эксплуатации аэро
- •2.2. Методы повышения надежности элементов
- •2.3. Методы повышения надежности систем
- •3. Повышение надежности путем структурной избыточности
- •3.1 Виды резерва
- •3.2. Показатели надежности систем со структурной избыточностью
- •3.3. Оптимизация резервирования
- •4. Обеспечение надежности на этапах эксплуатации
- •4.1 Основные характеристики процесса эксплуатации
- •4.2 Изменения параметров в процессе эксплуатации.
- •4.3 Стратегия технического обслуживания по наработке
- •4.4 Прогнозирующий контроль технического состояния авиационного радиооборудования как основа стратегии технического обслуживания по состоянию
- •4.5. Стратегия технического обслуживания по состоянию.
- •4.6. Автоматизированные системы диагностирования и техническое обслуживание арэо.
- •5. Обеспечение стойкости и устойчивости аэро при температурных воздействиях
- •5.1. Общие вопросы тепловой защиты арэо.
- •5.2 Способы теплопередачи
- •5.3 Оценка способа охлаждения арэо.
- •5.4 Конструктивные приемы охлаждения аппаратуры
- •6. Защита арэо от механических воздействий.
- •6.1 Обеспечение виброустойчивости и вибропрочности арэо.
- •6.2 Расчет амортизационной системы
- •7. Элементная и конструктивная основа обеспечения эксплуатационной надежности.
- •7.1 Принципы модульного конструирования радиоэлектронной аппаратуры и базовые несущие конструкции
- •7.2 Применение интегральных микросхем при конструировании арэо
- •8. Обеспечение надежности типовых элементов замены путем конструирования гибридно-интегральных модулей на элементной базе функциональной микроэлектроники.
- •8.1 Оптоэлектроника и оптоэлектронные микросхемы
- •8.2 Элементы акустоэлектроники
- •8.3 Элементы магнитных сбис постоянных запоминающих устройств
- •Библиографический список
- •Оглавление
- •Рецензия
8. Обеспечение надежности типовых элементов замены путем конструирования гибридно-интегральных модулей на элементной базе функциональной микроэлектроники.
Постоянный рост сложности РЭА для решения современных хозяйственных задач приводит к необходимости разрешения противоречий в своеобразной системе – сложность, надежность – масса – энергопотребление. Невозможность разрешения этих противоречий путем построения аппаратуры на дискретных элементах способствовала развитию микроэлектроники. Наиболее перспективным видом микроэлектронной аппаратуры являются гибридно-интегральные модули с использованием базы функциональной микроэлектроники (ГИМ ФМ). В таблице показаны четыре главных направления функциональной микроэлектроники, расположенные в порядке освоенности промышленностью: оптоэлектрониканика, акустоэлектроника, термоэлектроника и химотроника.
Представим кратко отдельные направления функциональной микроэлектроники.
Таблица
Физические явления, используемые в функциональной микроэлектронике
|
Направление функциональной микроэлектроники |
Физическое явление |
Функциональный элемент в электрической схеме |
|
Оптоэлектроника |
Электролюминесценция |
Светодиоды |
|
|
Внутренний фотоэффект |
Фоторезисторы, фотодиоды, фоторезисторы |
|
|
Внутреннее отражение света |
Светодиоды |
|
|
Оптические явления в жидких кристалах |
Цифровые индикатор. Визуализаторы тепловых полей |
|
|
Электронно-оптические эффекты Керра и Поккельса |
Модуляторы светового потока |
|
|
Когерентное оптическое излучение |
Генераторы когерентного светового потока (лазары) |
|
Акустоэлектроника |
Пьезоэлектрический эффект и объемные акустические волны |
Синхронизаторы. Генераторы. Устройства задержки сигналов |
|
|
Взаимодействие пучка электронов с акустической волной (поверхностные акустические волны) |
Усилители. Преобразователи. Устройства задержки сигналов |
|
Термоэлектроника |
Электротепловые процессы |
Фильтры инфранизких частот. Генераторы инфранизких частот. Фазосдвигающие цепи |
|
|
Термоэлектрические процессы |
Источники питания |
|
Хемотроника |
Электрохимические процессы |
Усилители инфранизких частот. Генераторы, преобразователи, источники питания |
8.1 Оптоэлектроника и оптоэлектронные микросхемы
Оптоэлектроника – это раздел электроники, связанный с изучением физических явлений, в которых неразрывны оптические и электрические процессы, а также с разработкой, производством и применением оптоэлектронных приборов.
Оптоэлектронный прибор– это прибор, чувствительный к электромагнитному излучению в видимой, инфракрасной или ультрофиолетовой областях спектра, либо прибор, излучающий и преобразующий некогерентное или когерентное излучение в этих спектральных областях.
Перечислим важнейшие оптоэлектронные приборы, устройства и системы.
Индикаторы представляют собой электрически управляемые приборы, предназначенные для визуального отображения информации. Они широко применяются во многих устройствах, например электронных часах, микрокалькуляторах, приборных щитах автоматизированных систем управления, автомабилей, самолетов и т.д. Выпускаются полупроводниковые (светодиодные), жидкокристаллические, вакуумные катодолюминесцентные и газоразрядные индикаторы. Разрабатываются плоские экраны телевизионного типа с лучшими, чем у современных цветных кинескопов, эксплуатационными, эргономическими и экономическими показателями.
Приемники изображения(фотоприемники) как в видимом, так и в инфракрасном диапазонах предназначены для преобразования изображений в последовательность видеосигналов. Их используют в телевизионных передатчиках, в фототелеграфии, в ЭВМ для считывания входной информации, в приборах контроля технологических процессов и др.
Солнечные батареипредставляют собой матрицы фотоэлементов на основе p-n переходов или гетеропереходов, предназначенные для прямого преобразования солнечной энергии в электрическую.
Оптоэлектронные датчики– приборы, преобразующие различные физические воздействия (температуру, давление, влажность, ускорение, магнитное поле и др.) в электрические сигналы. Широкое распростронение получили лазерные и светодиодные датчики влажности и загрязнения атмосферы. Их принцип действия основан на селективном поглащении излучения регистрируемыми веществами. Перспективны волоконно-оптические датчики, в которых внешние воздействия изменяют характеристики оптического сигнала (фазу, амплитуду, поляризацию).
Оптопарысостоят из полупроводниковых излучающего и фотоприемного элементов, между которыми имеется оптическая связь. Кроме того, обеспечивается электрическая изоляция между входом и выходом. Микроэлектронный прибор, содержащий одну или несколько оптопар и выполняющий определенную функцию преобразования, обработки и передачи сигнала, называютоптоэлектронной микросхемой. Оптопары применяют в микроэлектронной и электротехнической аппаратуре для электрической развязки при передаче сигналов, бесконтактной коммутации сильноточных и высоковольтных цепей, в устройствахрегулирования и контроля.
Постаянные запоминающие устройства– устройства, в которых информация записывается на носитель с помощью теплового воздействия остросфокусированного лазерного луча. Достоинством оптоэлектронных ПЗУ являются высокая плотность записи и большой срок хранения информации (10….30 лет). Они перспективны для применения в архивных ЗУ ЭВМ и информационно-поисковых системах,содержащих постаянную информацию, к которой многократно обращается большое число пользователей.
Оптические системы передачи и обработки информации. Форма представления информации в виде оптических сигналов по сравнению с другими ее формами (в частности, в виде электрических сигналов) имеет ряд важных преимуществ. Частота колебаний в оптическом диапазоне на 3…5 порядков выше, чем в радиотехническом. Это позволяет во много раз повысить пропускную способность линии связи (скорость передачи информации) за счет увеличения шириныспектра модулирующих частот (до нескольких гигагерц) и одновременной передачи сигналов по одному каналу на нескольких несущих частотах. Использование в качестве носителя информации электрически нейтральных фотонов обеспечивает: идеальную электрическую развязку оптоэлектронного элемента связи, однонаправленность передачи и отсутствие влияния приемника на передатчик, высокую помехозащищенность оптических каналов связи вследствие невосприимчивости фотонов к воздействию электромагнитных полей, отсутствие влияния паразитных емкостей на длительность переходных процессов в канале связи и отсутствие паразитных связей между каналами.
Наряду с указанными достоинствами имеются и серьезные недостатки. Прежде всего это низкий КПД преобразований оптических сигналов в электрические и электрических в оптические. В современных приборах (лазерах, светоизлучающих диодах, p-i-n фотодиодах) КПД, как правило, не превышает 10 – 20 %. Если указанные преобразования осуществляются в устройстве дважды, то общий КПД уменьшается до единиц процентов. Применение в микроэлектронной аппаратуре оптоэлектронных устройств с низким КПД ограничено, так как при этом возрастает энергопотребление, затрудняется миниатюризация из-за необходимости обеспечения теплоотвода, возникает перегрев, снижающий эффективность и надежность большинства оптоэлектронных приборов.
Невосприимчивость оптического излучения к различным внешним воздействиям и электронейтральность фотона являются не только достоинствами, но и недостатками, так как затрудняют управление интенсивностью и направлением распространения светового потока. Используемые для этого электро- и магнитооптические явления, как правило, представляют собой эффекты второго и более высоких порядков и требуют для реализации очень высоких напряжений (сотни и тысяч вольт).
Для передачи оптических сигналов на различные расстояния используют волоконно-оптические системы (ВОСП). Оптический сигнал представляет собой оптическое излучение, один или несколько параметров которого (амплтуда, частота, фаза, поляризация) изменяются в соответствии с передаваемой информацией. В ВОСП производят формирование, передачу, преобразование, обработку и распределение оптических сигналов. В соответствии с этим компоненты ВОСП делятся на четыре группы:
источники излучения и передающие оптоэлектронные модули. формирующие оптические сигналы;
волоконно-оптические линии связи (ВОЛС) – кабели, служащие для передачи оптических сигналов;
оптические разветвители и коммутаторы, распределяющие оптические сигналы;
приемники излучения и приемные оптоэлектронные модули, преобразующие и обрабатывающие оптические сигналы.
Современные ВОСП исключительно разнообразны: сверхкороткие линии (до 1м) для обмена информацией в высоковольтной аппаратуре; короткие бортовые и внутриобъектовые (1...100 м); средней протяженности (0,3...10 км), составляющие основу межмашинных сетей передачи данных и разветвлений внутригородских АТС; магистральные, в том числе меж- и трансконтинентальные.
Оптрон представляет собой связанные световым потоком светодиод и фоторезистор (или фотодиод). Электрический сигнал вызывает свечение светодиода, которое воспринимается фоторезистором или фотодиодом, преобразующим световой поток в электрический сигнал. Оптрон подобно транзистору имеет многочисленные схемотехнические применения: преобразованияэлектрических сигналов, их генерация, усиление, переключение, гальваническая развязка и др.
Наряду с оптронами в состав элементной базы оптоэлектроники входят оптоэлектронные индикаторы матричного типа: индикаторы на светоизлучающих диодах (СИД), светоизлучающих резисторах (СИР) и жидкокристаллические индикаторы (ЖК). Индикаторы СИД и СИР имеют трехцветное свечение: зеленое, желтое и красное. Размер символов достигает 10 – 20 мм при токе потребления около 10 мА. Главное направление работ по развитию этой элементной базы оптоэлектроники – повышение светоотдачи, которая в настоящее время составляет примерно 2% . Индикаторы ЖК имеют вдвое более высокую контрастность, чем СИД и чрезвычайно малое потребление мощности (до 10мкВт/см2), что делает их перспективными для батарейной РЭА. Размеры символов индикаторов ЖК наибольшие, достигают 100 мм. Главным недостатком выпускаемых в настоящее время ЖК является ограниченность температурного интервала эксплуатации пределами от –5 до +550С, однако нет принципиальных препятствий для устранения этого недостатка в будущем.
В состав элементной базы оптоэлектроники входят световодные кабели, обеспечивающие передачу на расстояние светового потока в результате многократного внутреннего отражения луча внутри стеклянной основы световодной жилы, имеющей диаметр около 40 мкм. Стеклянное волокно световодной жилы имеет покрытие, позволяющее набирать волокна в пучок в виде световодного кабеля.
Важной особенностью световодов как элементов оптоэлектроники является то обстоятельство, что носителями сигналов в них являются не электроны, а фотоны, блогодаря чему они практически не подвержены наводкам от внешних электромагнитных полей. Кроме того, отсутствует мешающее взаимодействие внутри потока, так как фотоны в отличие от электронов электрически нейтральны. Эти особенности обеспечивают интенсивное внедрение оптоэлектроники в новые разработки современной РЭА.
Главной трудностью при конструировании ГИМ ФМ на элементной базе оптоэлектроники является выполнение соединений между модулями с помощью световодных кабелей. Наибольшее затухание оптического сигнала наблюдается на входе и выходе световода, т.е. в соединителях. Возможны два вида световодных соединителей: пассивные и активные. Пассивные соединители предназначены для стыковки торцов стеклянных волокон друг с другом. Активные соединители содержат преобразователи оптических сигналов в электрические сигналы и по принципу своей работы разрывают не световод, а электрическую цепь.
Активные световодные соединители конструктивно надежнее пассивных, и применение их предпочтительно. Однако в ряде случаев требуется иметь разъемный контакт непосредственно одного волокна с другим, т.е. использовать пассивный световодный соединитель. Пассивный световодный соединитель должен обеспечивать точное совмещение торцов волокон с наружным диаметром 100 мкм и диаметром стеклянной сердцевины 40 мкм, допускающее многократное соединение-разъединение волокон без дополнительной регулировки. Одновременно с этим должна обеспечиваться защита оптической чистоты волокон от вредного воздействия окружающей среды, в том числе стыкуемых торцов волокон, с учетом механических воздействий при соединениях-разъединениях. Показатели качества пассивных световодных соединителей является затухание сигнала, измеряемое в децибелах. На затухание наибольшее влияние оказывают поперечная и угловая несоосность волокон, зазор между соединяемыми торцами волокон. Наибольшую долю вносит несоосность волокон.
В световодном кабеле содержится до 8 волокон, он имеет погонную массу 50 г/м в отличие от обычного кабеля для передачи широкополосных сигналов, погонная масса которого 20 кг/м. Здесь достигается экономия по массе в 400 раз. Световодные кабели находят широкое применение при обеспечении связи с диспетчерским пультом и других случаях.
Оптическая вычислительная техника – это комплекс оптоэлектронных и оптических приборов, предназначенный для создания аналоговых или цифровых вычислительных устройств. Это направление считается очень перспективным, оно может обеспечить значительное повышение быстродействия. Пока такие устройства находятся в стадии лабораторных исследований.
Основными элементами оптоэлектронных приборов являются светоизлучатели (лазеры и светодиоды), устройства для управления излучением (модуляторы, переключатели), оптические каналы связи (светодиоды) и среды для передачи и преобразования оптических сигналов, фотоприемники на фотодиодах, фототранзисторах и других фотоэлектрических приборах, индикаторы, полупроводниковые фотоэлементы, а также оптоэлектронные микросхемы.
Элементы оптоэлектронных приборов изготавливают из различных материалов. Так, в одном из простейших приборов – оптопаре используют арсенид галлия (излучатель), полимерный клей (оптическая среда) и кремний (фотоприемник). В волоконно-оптических системах передачи кроме указанных материалов применяют кварц (оптическая среда). Особенно велико число применяемых материалов в сложных приборах. Наличие разнородных материалов снижает общий КПД прибора из-за поглощения оптического излучения в пассивных областях, его отражения и рассеяния на многочисленных оптических границах. Возникают дополнительные трудности при конструировании приборов, обусловленные различием температурных коэффициентов расширения материалов; затрудняется микроминиатюризация, усложняется технология и, как следствие, повышается стоимость.
